Illinois Journal of Mathematics

Mappings of finite distortion: gauge dimension of generalized quasicircles

David A. Herron and Pekka Koskela

Full-text: Open access

Abstract

We determine the correct dimension gauge for measuring generalized quasicircles (the images of a circle under so-called $\mu$-homeomorphisms). We establish a sharp modulus of continuity estimate for the inverse of a homeomorphism with finite exponentially integrable distortion. We exhibit several illustrative examples.

Article information

Source
Illinois J. Math., Volume 47, Number 4 (2003), 1243-1259.

Dates
First available in Project Euclid: 13 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1258138102

Mathematical Reviews number (MathSciNet)
MR2037001

Zentralblatt MATH identifier
1050.30012

Subjects
Primary: 30C62: Quasiconformal mappings in the plane
Secondary: 28A78: Hausdorff and packing measures 30C65: Quasiconformal mappings in $R^n$ , other generalizations 31B15: Potentials and capacities, extremal length

Citation

Herron, David A.; Koskela, Pekka. Mappings of finite distortion: gauge dimension of generalized quasicircles. Illinois J. Math. 47 (2003), no. 4, 1243--1259. https://projecteuclid.org/euclid.ijm/1258138102


Export citation