Illinois Journal of Mathematics

Optimal control systems governed by second-order ODEs with Dirichlet boundary data and variable parameters

Urszula Ledzewicz, Heinz Schättler, and Stanislaw Walczak

Full-text: Open access

Abstract

Optimal control systems governed by second-order ODEs with boundary data and variable parameters are considered. Using variational methods a theorem on existence of optimal processes is proven and a sufficient condition for continuous (or semicontinuous) dependence of optimal trajectories and controls on parameters is given.

Article information

Source
Illinois J. Math., Volume 47, Number 4 (2003), 1189-1206.

Dates
First available in Project Euclid: 13 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1258138099

Digital Object Identifier
doi:10.1215/ijm/1258138099

Mathematical Reviews number (MathSciNet)
MR2036998

Zentralblatt MATH identifier
1031.49002

Subjects
Primary: 49K40: Sensitivity, stability, well-posedness [See also 90C31]
Secondary: 34H05: Control problems [See also 49J15, 49K15, 93C15] 49J15: Optimal control problems involving ordinary differential equations

Citation

Ledzewicz, Urszula; Schättler, Heinz; Walczak, Stanislaw. Optimal control systems governed by second-order ODEs with Dirichlet boundary data and variable parameters. Illinois J. Math. 47 (2003), no. 4, 1189--1206. doi:10.1215/ijm/1258138099. https://projecteuclid.org/euclid.ijm/1258138099


Export citation