Illinois Journal of Mathematics

Topological vector spaces of Bochner measurable functions

Lech Drewnowski and Iwo Labuda

Full-text: Open access

Abstract

The notion of a topological vector space of Bochner measurable functions is introduced and studied. Among the main results obtained are characterizations of completeness and of containment of copies of $c_0$ or $\ell_\infty$.

Article information

Source
Illinois J. Math., Volume 46, Number 1 (2002), 287-318.

Dates
First available in Project Euclid: 13 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1258136155

Digital Object Identifier
doi:10.1215/ijm/1258136155

Mathematical Reviews number (MathSciNet)
MR1936090

Zentralblatt MATH identifier
1024.46011

Subjects
Primary: 46E40: Spaces of vector- and operator-valued functions
Secondary: 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citation

Drewnowski, Lech; Labuda, Iwo. Topological vector spaces of Bochner measurable functions. Illinois J. Math. 46 (2002), no. 1, 287--318. doi:10.1215/ijm/1258136155. https://projecteuclid.org/euclid.ijm/1258136155


Export citation