Illinois Journal of Mathematics

Order of the canonical vector bundle on $C_{n}(K)/\Sigma_{k}$

Su-Win Yang

Full-text: Open access

Abstract

It has been proved that the order of the naturally defined vector bundle on $C_{n}(K)/\Sigma_{k}$, the configuration space of $k$ distinct points in $R^{n}$, is helpful in finding some new elements of maps between spheres. Now, with the help of representation ring, we give some partial results concerning the largest powers of prime numbers dividing the orders.

Article information

Source
Illinois J. Math., Volume 25, Issue 1 (1981), 136-146.

Dates
First available in Project Euclid: 20 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1256047373

Digital Object Identifier
doi:10.1215/ijm/1256047373

Mathematical Reviews number (MathSciNet)
MR602904

Zentralblatt MATH identifier
0439.55012

Subjects
Primary: 55P35: Loop spaces
Secondary: 55N15: $K$-theory [See also 19Lxx] {For algebraic $K$-theory, see 18F25, 19- XX}

Citation

Yang, Su-Win. Order of the canonical vector bundle on $C_{n}(K)/\Sigma_{k}$. Illinois J. Math. 25 (1981), no. 1, 136--146. doi:10.1215/ijm/1256047373. https://projecteuclid.org/euclid.ijm/1256047373


Export citation