Illinois Journal of Mathematics

A Sturm-type comparison theorem by a geometric study of plane multihedgehogs

Yves Martinez-Maure

Full-text: Open access

Abstract

We prove a Sturm-type comparison theorem by a geometric study of plane (multi)hedgehogs. This theorem implies that for every $2\pi$-periodic smooth real function $h$, the number of zeros of $h$ in $[0,2\pi[$ is not bigger than the number of zeros of $h+h^{\prime\prime}$ plus $2$. In terms of $N$-hedgehogs, it can be interpreted as a comparison theorem between number of singularities and maximal number of support lines through a point. The rest of the paper is devoted to a series of geometric consequences.

Article information

Source
Illinois J. Math., Volume 52, Number 3 (2008), 981-993.

Dates
First available in Project Euclid: 1 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1254403726

Digital Object Identifier
doi:10.1215/ijm/1254403726

Mathematical Reviews number (MathSciNet)
MR2546019

Zentralblatt MATH identifier
1202.26019

Subjects
Primary: 52A30: Variants of convex sets (star-shaped, (m, n)-convex, etc.) 53A04: Curves in Euclidean space

Citation

Martinez-Maure, Yves. A Sturm-type comparison theorem by a geometric study of plane multihedgehogs. Illinois J. Math. 52 (2008), no. 3, 981--993. doi:10.1215/ijm/1254403726. https://projecteuclid.org/euclid.ijm/1254403726


Export citation

References

  • V. I. Arnold, A branched covering of $\mathbb{C}P^{2}\rightarrow\mathbb{S}^{4}$, hyperbolicity and projectivity topology, Sib. Math. J. 29 (1988), 717–726.
  • V. I. Arnold, Topological invariants of plane curves and caustics, University Lecture Series, vol. 5, Amer. Math. Soc., Providence, 1994.
  • V. I. Arnold, Topological properties of Legendre projections in contact geometry of wave fronts, St. Petersburg Math. J. 6 (1995), 439–452.
  • H. Geppert, Über den Brunn–Minkowskischen Satz, Math. Z. 42 (1937), 238–254.
  • R. Langevin, G. Levitt and H. Rosenberg, Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss). Singularities, Banach Center Publ. 20 (1988), 245–253.
  • Y. Martinez-Maure, Indice d'un hérisson: étude et applications, Publ. Mat. 44 (2000), 237–255.
  • Y. Martinez-Maure, Contre-exemple à une caractérisation conjecturée de la sphère, C. R. Acad. Sci. Paris, Sér. I 332 (2001), 41–44.
  • Y. Martinez-Maure, Sommets et normales concourantes des courbes convexes de largeur cons tante et singularités des hérissons, Arch. Math. 79 (2002) 489–498.
  • Y. Martinez-Maure, Les multihérissons et le théorème de Sturm–Hurwitz, Arch. Math. 80 (2003), 79–86.
  • Y. Martinez-Maure, Geometric study of Minkowski differences of plane convex bodies, Canad. J. Math. 58 (2006), 600–624.
  • G. Panina, New counterexamples to A. D. Alexandrov's hypothesis, Adv. Geom. 5 (2005), 301–317.
  • R. Schneider, Convex bodies: The Brunn–Minkowski theory, Cambridge Univ. Press, Cambridge, 1993.
  • S. Tabachnikov, Around four vertices, Russian Math. Surveys 45 (1990), 229–230.