Illinois Journal of Mathematics

Symmetrization and harmonic measure

Dimitrios Betsakos

Full-text: Open access

Abstract

We prove the equality statements for the classical symmetrization estimates for harmonic measure. In fact, we prove more general results for $\alpha$-harmonic measure.\break The $\alpha$-harmonic measure is the hitting distribution of symmetric $\alpha$-stable processes upon exiting an open set in $\mathbb{R^n}$ ($0<\alpha<2$, $n\geq2$). It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove polarization and symmetrization inequalities for $\alpha$-harmonic measure. We give a complete description of the corresponding equality cases. The proofs involve analytic and probabilistic arguments.

Article information

Source
Illinois J. Math., Volume 52, Number 3 (2008), 919-949.

Dates
First available in Project Euclid: 1 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1254403722

Digital Object Identifier
doi:10.1215/ijm/1254403722

Mathematical Reviews number (MathSciNet)
MR2546015

Zentralblatt MATH identifier
1180.31009

Subjects
Primary: 30C85: Capacity and harmonic measure in the complex plane [See also 31A15] 31B15: Potentials and capacities, extremal length 31C05: Harmonic, subharmonic, superharmonic functions 60G52: Stable processes 60J45: Probabilistic potential theory [See also 31Cxx, 31D05]

Citation

Betsakos, Dimitrios. Symmetrization and harmonic measure. Illinois J. Math. 52 (2008), no. 3, 919--949. doi:10.1215/ijm/1254403722. https://projecteuclid.org/euclid.ijm/1254403722


Export citation

References

  • A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169.
  • A. Baernstein II, A unified approach to symmetrization, Partial differential equations of elliptic type (Cortona 1992), Cambridge Univ. Press, 1994, pp. 47–91.
  • A. Baernstein II, The $*$-function in complex analysis, Handbook of complex analysis: Geometric function theory, vol. 1, North-Holland, Amsterdam, 2002, pp. 229–271.
  • A. Baernstein II and B. A. Taylor, Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J. 43 (1976), 245–268.
  • R. Bañuelos, R. Latala and P. J. Méndez-Hernández, A Brascamp–Lieb–Luttinger-type inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc. 129 (2001), 2997–3008.
  • D. Betsakos, Polarization, conformal invariants, and Brownian motion, Ann. Acad. Sci. Fenn. Ser. A I Math. 23 (1998), 59–82.
  • D. Betsakos, Symmetrization, symmetric stable processes, and Riesz capacities, Trans. Amer. Math. Soc. 356 (2004), 735–755, 3821.
  • D. Betsakos, Some properties of $\alpha $-harmonic measure, Colloq. Math. 111 (2008), 297–314.
  • D. Betsakos, Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels, Ann. Acad. Sci. Fenn. Math. 33 (2008), 413–427.
  • J. Bliedtner and W. Hansen, Potential theory. An analytic and probabilistic approach to balayage, Springer, Berlin, 1986.
  • K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), 43–80.
  • K. Bogdan, Representation of $\alpha$-harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), 227–243.
  • K. Bogdan and T. Byczkowski, Potential theory for the $\alpha$-stable Schrödinger operator on bounded Lipschitz domains, Studia Math. 133 (1999), 53–92.
  • F. Brock and A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc. 352 (2000), 1759–1796.
  • Z. Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann. 312 (1998), 465–501.
  • Z. Q. Chen and R. Song, Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal. 159 (1998), 267–294.
  • V. N. Dubinin, Capacities and geometric transformations of subsets in n-space, Geomet. Funct. Anal. 3 (1993), 342–369.
  • V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable, Russian Math. Surveys 49 (1994), 1–79.
  • E. B. Dynkin, Markov processes, vol. I, Springer, Berlin, 1965.
  • M. Essén and D. F. Shea, On some questions of uniqueness in the theory of symmetrization, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978/1979), 311–340.
  • W. K. Hayman, Subharmonic functions, vol. 2, Academic Press, London, 1989.
  • N. S. Landkof, Foundations of modern potential theory, Springer, New York, 1972.
  • J. Sarvas, Symmetrization of condensers in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I 522 (1972), 1–44.
  • J. van Schaftingen, Universal approximation of symmetrizations by polarizations, Proc. Amer. Math. Soc. 134 (2006), 177–186.
  • A. Yu. Solynin, Functional inequalities via polarization, Algebra i Analiz 8 (1996), 148–185 (in Russian); English transl. in St. Petersburg Math. J. 8 (1997), 1015–1038.
  • R. Song and J.-M. Wu, Boundary Harnack principle for symmetric stable processes, J. Funct. Anal. 168 (1999), 403–427.
  • J.-M. Wu, Harmonic measures for symmetric stable processes, Studia Math. 149 (2002), 281–293.