Illinois Journal of Mathematics

Finite groups with $L$-free lattices of subgroups

Czesław Bagiński and Agnieszka Stocka

Full-text: Open access

Abstract

Balanced and strongly balanced lattices were introduced in order to generalize the uniform dimension of modular lattices. A description of finite groups with strongly balanced subgroup lattices was given by the authors in (Colloq. Math. 82 (1999), 65–77) and strengthened by Schmidt in (Illinois J. Math. 47 (2003), 515–528). In this paper, a description of finite groups with dually strongly balanced subgroup lattices is given.

Article information

Source
Illinois J. Math., Volume 52, Number 3 (2008), 887-900.

Dates
First available in Project Euclid: 1 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1254403720

Digital Object Identifier
doi:10.1215/ijm/1254403720

Mathematical Reviews number (MathSciNet)
MR2546013

Zentralblatt MATH identifier
1193.20018

Subjects
Primary: 20E15: Chains and lattices of subgroups, subnormal subgroups [See also 20F22]

Citation

Bagiński, Czesław; Stocka, Agnieszka. Finite groups with $L$-free lattices of subgroups. Illinois J. Math. 52 (2008), no. 3, 887--900. doi:10.1215/ijm/1254403720. https://projecteuclid.org/euclid.ijm/1254403720


Export citation

References

  • C. Bagiński and A. Sakowicz, Finite groups with globally permutable lattices of subgroups, Colloq. Math. 82 (1999), 65–77.
  • N. Blackburn, Nilpotent groups in which the derived group has two generators, J. London Math. Soc. 35 (1960), 33–35.
  • D. Gorenstein, Finite groups, 3rd ed., Chelsea Publishing Company, New York, 1980.
  • B. Huppert, Endliche gruppen I, Springer, Berlin, 1983.
  • B. Huppert and N. Blackburn, Finite groups II, Springer, Berlin, 1983.
  • J. Krempa and B. Terlikowska-Osłowska, On uniform dimension of lattices, Contributions to general algebra 9, Holder–Pichler–Tempsky, Wien, 1995, pp. 219–230.
  • A. Lubotzky and N. A. Mann, Powerful $p$-groups. I. Finite groups, J. Algebra 105 (1987), 484–505.
  • D. J. S. Robinson, A course in the theory of group, Springer, New York, 1996.
  • R. Schmidt, Subgroup lattices of groups, Walter de Gruyter & Co. Berlin, 1994.
  • R. Schmidt, $L$-free groups, Special issue in honor of Reinhold Baer (1902–1979), Illinois J. Math. 47 (2003), 515–528.
  • R. Schmidt, Planar subgroup lattices, Algebra Universalis 55 (2006), 3–12.
  • R. Schmidt, On the occurrence of the complete graph $K_5$ in the Hasse graph of a finite group, Rend. Sem. Mat. Univ. Padova 115 (2006), 99–124.
  • J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–434.