Illinois Journal of Mathematics

Automorphisms of $\mathcal{C}(K)$-spaces and extension of linear operators

N. J. Kalton

Full-text: Open access

Abstract

We study the class of separable (real) Banach spaces $X$ which can be embedded into a space $\mathcal{C}(K)$ ($K$ compact metric) in only one way up to automorphism. We show that in addition to the known spaces $c_0$ (and all it subspaces) and $ℓ_1$ (and all its weak*-closed subspaces) the space $c_{0}(ℓ_{1})$ has this property. We show on the other hand (answering a question of Castillo and Moreno) that $ℓ_p$ for $1 < p < ∞$ fails this property. We also show that $ℓ_p$ can be embedded in a super-reflexive space $X$ so that there is an operator $T : \ell_{p}\to\mathcal{C}(K)$ which has no extension, answering a question of Zippin.

Article information

Source
Illinois J. Math., Volume 52, Number 1 (2008), 279-317.

Dates
First available in Project Euclid: 15 May 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1242414132

Digital Object Identifier
doi:10.1215/ijm/1242414132

Mathematical Reviews number (MathSciNet)
MR2507245

Zentralblatt MATH identifier
1184.46010

Subjects
Primary: 46B03: Isomorphic theory (including renorming) of Banach spaces 46B20: Geometry and structure of normed linear spaces

Citation

Kalton, N. J. Automorphisms of $\mathcal{C}(K)$-spaces and extension of linear operators. Illinois J. Math. 52 (2008), no. 1, 279--317. doi:10.1215/ijm/1242414132. https://projecteuclid.org/euclid.ijm/1242414132


Export citation

References

  • I. Aharoni and J. Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 281–283.
  • B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976), 103–139.
  • Y. Benyamini, Separable $G$ spaces are isomorphic to $C(K)$ spaces, Israel J. Math. 14 (1973), 287–293.
  • K. Borsuk, Über Isomorphie der Funktionalraüme, Bull. Int. Ac. Pol. Sci. (1933), 1–10.
  • J. Bourgain, A counterexample to a complementation problem, Compositio Math. 43 (1981), 133–144.
  • ––––, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163–168.
  • D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997–1011.
  • F. Cabello Sánchez, J. M. F. Castillo, N. J. Kalton and D. T. Yost, Twisted sums with $C(K)$ spaces, Trans. Amer. Math. Soc. 355 (2003), 4523–4541 (electronic).
  • P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, Geometry of Banach spaces (Strobl, 1989), 1990, pp. 49–63.
  • J. M. F. Castillo and Y. Moreno, On the Lindenstrauss–Rosenthal theorem, Israel J. Math. 140 (2004), 253–270.
  • J. M. F. Castillo and J. Suarez, Extending operators into Lindenstrauss spaces, Israel J. Math. 169 (2009), 1–27.
  • G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. 353 (2001), 3895–3918 (electronic).
  • G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
  • G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672–695.
  • D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89–108.
  • A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 1955 (1955), 140 (French).
  • W. B. Johnson and M. Zippin, Extension of operators from weak$^*$-closed subspaces of $l_1$ into $C(K)$ spaces, Studia Math. 117 (1995), 43–55.
  • N. J. Kalton, Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992), 479–529.
  • ––––, On subspaces of $c_0$ and extension of operators into $C(K)$-spaces, Q. J. Math. 52 (2001), 313–328.
  • ––––, Twisted Hilbert spaces and unconditional structure, J. Inst. Math. Jussieu 2 (2003), 401–408.
  • ––––, Extending Lipschitz maps into $\mathcal{C} (K)$-spaces, Israel J. Math. 162 (2007), 275–315.
  • ––––, Extension of linear operators and Lipschitz maps into $\mathcal{C} (K)$-spaces, New York J. Math. 13 (2007), 317–381.
  • N. J. Kalton and M. I. Ostrovskii, Distances between Banach spaces, Forum Math. 11 (1999), 17–48.
  • N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30.
  • N. J. Kalton and D. Werner, Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178.
  • J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72 (1952), 323–326.
  • D. Li, Quantitative unconditionality of Banach spaces $E$ for which ${\mathscr{K}}(E)$ is an $M$-ideal in ${\mathscr{L}}(E)$, Studia Math. 96 (1990), 39–50.
  • J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263–287.
  • J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Functional Analysis 8 (1971), 225–249.
  • J. Lindenstrauss and H. P. Rosenthal, The $\mathcal{L}\sb{p}$ spaces, Israel J. Math. 7 (1969), 325–349.
  • ––––, Automorphisms in $c_{0}$, $l_{1}$ and $m$, Israel J. Math. 7 (1969), 227–239.
  • J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I: Sequence spaces. Springer-Verlag, Berlin, (1977).
  • R. H. Lohman, A note on Banach spaces containing $l_{1}$, Canad. Math. Bull. 19 (1976), 365–367.
  • B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^{p}$, Société Mathématique de France, Paris, 1974 (French). Astérisque, No. 11.
  • A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156. (1 foldout) (Russian).
  • L. Nachbin, On the Hahn-Banach theorem, Anais Acad. Brasil. Ci. 21 (1949), 151–154.
  • E. M. Nikišin, A resonance theorem and series in eigenfunctions of the Laplace operator, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 795–813 (Russian).
  • M. I. Ostrovskiĭ, Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry, Quaestiones Math. 17 (1994), 259–319.
  • A. Pełczyński, Universal bases, Studia Math. 32 (1969), 247–268.
  • H. P. Rosenthal, On factors of $C$([0, 1]) with non-separable dual, Israel J. Math. 13 (1972), 361–378 (1973); correction, ibid. 21 (1975), 93–94.
  • Z. Semadeni, Banach spaces of continuous functions. Vol. I, Monografie Matematyczne, vol. 55, PWN–-Polish Scientific Publishers, Warsaw, 1971.
  • A. Sobczyk, Projection of the space $(m)$ on its subspace $(c_0)$, Bull. Amer. Math. Soc. 47 (1941), 938–947.
  • P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991.
  • M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), 372–387.
  • ––––, A global approach to certain operator extension problems, Lecture Notes in Math., vol. 1470, Functional analysis (Austin, TX, 1987/1989), 1991, pp. 78–84.
  • ––––, Extension of bounded linear operators, Handbook of the geometry of Banach spaces, vol. 2, 2003, pp. 1703–1741.