Illinois Journal of Mathematics

Direct singularities and completely invariant domains of entire functions

Walter Bergweiler and Alexandre Eremenko

Full-text: Open access

Abstract

Let f be a transcendental entire function which omits a point a∈ℂ. We show that if D is a simply connected domain which does not contain a, then the full preimage f−1(D) is disconnected. Thus, in dynamical context, if an entire function has a completely invariant domain and omits some value, then the omitted value belongs to the completely invariant domain. We conjecture that the same property holds if a is a locally omitted value (i.e., the projection of a direct singularity of f−1). We were able to prove this conjecture for entire functions of finite order. We include some auxiliary results on singularities of f−1 for entire functions f, which can be of independent interest.

Article information

Source
Illinois J. Math. Volume 52, Number 1 (2008), 243-259.

Dates
First available in Project Euclid: 15 May 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1242414130

Mathematical Reviews number (MathSciNet)
MR2507243

Zentralblatt MATH identifier
1171.30009

Subjects
Primary: 30D20: Entire functions, general theory

Citation

Bergweiler, Walter; Eremenko, Alexandre. Direct singularities and completely invariant domains of entire functions. Illinois J. Math. 52 (2008), no. 1, 243--259. https://projecteuclid.org/euclid.ijm/1242414130.


Export citation

References

  • I. N. Baker, Completely invariant domains of entire functions, Mathematical essays dedicated to A. J. Macintyre (H. Shankar, ed.), Ohio University Press, Athens, OH, 1970, pp. 33--35.
  • --------, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. (Ser. A, I. Math.) 1 (1975), 277--283.
  • W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), 151--188.
  • --------, A question of Eremenko and Lyubich concerning completely invariant domains and indirect singularities, Proc. Amer. Math. Soc. 130 (2002), 3231--3236.
  • A. Eremenko, Geometric theory of meromorphic functions, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 221--230.
  • A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier 42 (1992), 989--1020.
  • J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
  • W. Gross, Eine ganze Funktion, für die jede komplexe Zahl Konvergenzwert ist, Math. Ann. 79 (1918), 201--208.
  • M. de Guzman, Differentiation of integrals in $R^n$, Springer, Berlin, 1975.
  • M. Heins, Asymptotic spots of entire and meromorphic functions, Ann. Math. (2) 66 (1957), 430--439.
  • F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helsingfors, 1914.
  • R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Berlin--Göttingen--Heidelberg, 1953.
  • T. Shimizu, On the fundamental domains and the groups for meromorphic functions. I, Jpn. J. Math. 8 (1931), 175--236.
  • H. Terasaka, On the division of Riemann surfaces into sheets, Jpn. J. Math. 8 (1931), 309--326.
  • M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959; reprint by Chelsea, New York, 1975.