International Journal of Differential Equations

Antisynchronization of Nonidentical Fractional-Order Chaotic Systems Using Active Control

Sachin Bhalekar and Varsha Daftardar-Gejji

Full-text: Open access

Abstract

Antisynchronization phenomena are studied in nonidentical fractional-order differential systems. The characteristic feature of antisynchronization is that the sum of relevant state-variables vanishes for sufficiently large value of time variable. Active control method is used first time in the literature to achieve antisynchronization between fractional-order Lorenz and Financial systems, Financial and Chen systems, and Lü and Financial systems. The stability analysis is carried out using classical results. We also provide numerical results to verify the effectiveness of the proposed theory.

Article information

Source
Int. J. Differ. Equ., Volume 2011, Special Issue (2011), Article ID 250763, 13 pages.

Dates
Received: 7 May 2011
Accepted: 16 July 2011
First available in Project Euclid: 26 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijde/1485399992

Digital Object Identifier
doi:10.1155/2011/250763

Mathematical Reviews number (MathSciNet)
MR2843502

Zentralblatt MATH identifier
1238.34095

Citation

Bhalekar, Sachin; Daftardar-Gejji, Varsha. Antisynchronization of Nonidentical Fractional-Order Chaotic Systems Using Active Control. Int. J. Differ. Equ. 2011, Special Issue (2011), Article ID 250763, 13 pages. doi:10.1155/2011/250763. https://projecteuclid.org/euclid.ijde/1485399992


Export citation

References

  • L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
  • L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signals,” Physical Review A, vol. 44, no. 4, pp. 2374–2383, 1991.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2001.
  • R. He and P. G. Vaidya, “Implementation of chaotic cryptography with chaotic synchronization,” Physical Review E, vol. 57, no. 2, pp. 1532–1535, 1998.
  • L. Huang, R. Feng, and M. Wang, “Synchronization of chaotic systems via nonlinear control,” Physics Letters, Section A, vol. 320, no. 4, pp. 271–275, 2004.
  • T. L. Liao, “Adaptive synchronization of two Lorenz systems,” Chaos, Solitons and Fractals, vol. 9, no. 9, pp. 1555–1561, 1998.
  • M. T. Yassen, “Adaptive control and synchronization of a modified Chua's circuit system,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 113–128, 2003.
  • E. W. Bai and K. E. Lonngren, “Synchronization of two Lorenz systems using active control,” Chaos, Solitons and Fractals, vol. 8, no. 1, pp. 51–58, 1997.
  • E. W. Bai and K. E. Lonngren, “Sequential synchronization of two Lorenz systems using active control,” Chaos, Solitons and Fractals, vol. 11, no. 7, pp. 1041–1044, 2000.
  • I. Wedekind and U. Parlitz, “Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor lasers,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 11, no. 4, pp. 1141–1147, 2001.
  • M. C. Ho, Y. C. Hung, and C. H. Chou, “Phase and anti-phase synchronization of two chaotic systems by using active control,” Physics Letters, Section A, vol. 296, no. 1, pp. 43–48, 2002.
  • G. H. Li and S. P. Zhou, “Anti-synchronization in different chaotic systems,” Chaos, Solitons and Fractals, vol. 32, no. 2, pp. 516–520, 2007.
  • W. Li, X. Chen, and S. Zhiping, “Anti-synchronization of two different chaotic systems,” Physica A, vol. 387, no. 14, pp. 3747–3750, 2008.
  • A. Al-Sawalha, “Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters,” Chaos, Solitons and Fractals, vol. 42, no. 3, pp. 1926–1932, 2009.
  • E. M. Elabbasy and M. M. El-Dessoky, “Adaptive anti-synchronization of different chaotic dynamical systems,” Chaos, Solitons and Fractals, vol. 42, no. 4, pp. 2174–2180, 2009.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999.
  • S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993.
  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.
  • J. Sabatier, S. Poullain, P. Latteux, J. L. Thomas, and A. Oustaloup, “Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench,” Nonlinear Dynamics, vol. 38, no. 1–4, pp. 383–400, 2004.
  • M. Caputo and F. Mainardi, “A new dissipation model based on memory mechanism,” Pure and Applied Geophysics, vol. 91, no. 1, pp. 134–147, 1971.
  • F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus and Applied Analysis, vol. 4, no. 2, pp. 153–192, 2001.
  • O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 145–155, 2002.
  • V. Daftardar-Gejji and H. Jafari, “Boundary value problems for fractional diffusion-wave equations,” The Australian Journal of Mathematical Analysis and Applications, vol. 3, pp. 1–18, 2006.
  • V. Daftardar-Gejji and S. Bhalekar, “Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method,” Applied Mathematics and Computation, vol. 202, no. 1, pp. 113–120, 2008.
  • H. Sun, W. Chen, and Y. Chen, “Variable-order fractional differential operators in anomalous diffusion modeling,” Physica A, vol. 388, no. 21, pp. 4586–4592, 2009.
  • I. S. Jesus and J. A. Tenreiro MacHado, “Fractional control of heat diffusion systems,” Nonlinear Dynamics, vol. 54, no. 3, pp. 263–282, 2008.
  • I. S. Jesus, J. A. T. Machado, and R. S. Barbosa, “Control of a heat diffusion system through a fractional order nonlinear algorithm,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1687–1694, 2010.
  • T. J. Anastasio, “The fractional-order dynamics of brainstem vestibulo-oculomotor neurons,” Biological Cybernetics, vol. 72, no. 1, pp. 69–79, 1994.
  • M. D. Ortigueira and J. A. T. Machado, “Fractional calculus applications in signals and systems,” Signal Processing, vol. 86, no. 10, pp. 2503–2504, 2006.
  • R. L. Magin, Fractional Calculus in Bioengineering, Begll House, Redding, Conn, USA, 2006.
  • V. Daftardar-Gejji and A. Babakhani, “Analysis of a system of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 511–522, 2004.
  • V. Daftardar-Gejji and H. Jafari, “Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives,” Journal of Mathematical Analysis and Applications, vol. 328, no. 2, pp. 1026–1033, 2007.
  • W. H. Deng and C. P. Li, “Chaos synchronization of the fractional Lü system,” Physica A, vol. 353, no. 1–4, pp. 61–72, 2005.
  • W. Deng and C. Li, “Synchronization of chaotic fractional Chen system,” Journal of the Physical Society of Japan, vol. 74, no. 6, pp. 1645–1648, 2005.
  • C. Li and W. Deng, “Chaos synchronization of fractional-order differential systems,” International Journal of Modern Physics B, vol. 20, no. 7, pp. 791–803, 2006.
  • T. Zhou and C. Li, “Synchronization in fractional-order differential systems,” Physica D, vol. 212, no. 1-2, pp. 111–125, 2005.
  • C. P. Li, W. H. Deng, and D. Xu, “Chaos synchronization of the Chua system with a fractional order,” Physica A, vol. 360, no. 2, pp. 171–185, 2006.
  • J. Wang, X. Xiong, and Y. Zhang, “Extending synchronization scheme to chaotic fractional-order Chen systems,” Physica A, vol. 370, no. 2, pp. 279–285, 2006.
  • J. Wang and Y. Zhang, “Designing synchronization schemes for chaotic fractional-order unified systems,” Chaos, Solitons and Fractals, vol. 30, no. 5, pp. 1265–1272, 2006.
  • X. Y. Wang and Y. He, “Projective synchronization of fractional order chaotic system based on linear separation,” Physics Letters, Section A, vol. 372, no. 4, pp. 435–441, 2008.
  • Y. Yu and H. X. Li, “The synchronization of fractional-order Rössler hyperchaotic systems,” Physica A, vol. 387, no. 5-6, pp. 1393–1403, 2008.
  • M. S. Tavazoei and M. Haeri, “Synchronization of chaotic fractional-order systems via active sliding mode controller,” Physica A, vol. 387, no. 1, pp. 57–70, 2008.
  • A. E. Matouk, “Chaos synchronization between two different fractional systems of Lorenz family,” Mathematical Problems in Engineering, vol. 2009, Article ID 572724, 11 pages, 2009.
  • J. Hu, Y. Han, and L. Zhao, “Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 1, pp. 115–123, 2010.
  • S. Bhalekar and V. Daftardar-Gejji, “Synchronization of different fractional order chaotic systems using active control,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp.3536–3546, 2010.
  • Y. Luchko and R. Gorenflo, “An operational method for solving fractional differential equations with the Caputo derivatives,” Acta Mathematica Vietnamica, vol. 24, pp. 207–233, 1999.
  • K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002.
  • K. Diethelm, “An algorithm for the numerical solution of differential equations of fractional order,” Electronic Transactions on Numerical Analysis, vol. 5, pp. 1–6, 1997.
  • K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002.
  • I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Physical Review Letters, vol. 91, no. 3, Article ID 034101, 4 pages, 2003.
  • X. J. Wu and S. L. Shen, “Chaos in the fractional-order Lorenz system,” International Journal of Computer Mathematics, vol. 86, no. 7, pp. 1274–1282, 2009.
  • W. C. Chen, “Nonlinear dynamics and chaos in a fractional-order financial system,” Chaos, Solitons and Fractals, vol. 36, no. 5, pp. 1305–1314, 2008.
  • C. Li and G. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons and Fractals, vol. 22, no. 2, pp. 443–450, 2004.
  • J. G. Lü, “Chaotic dynamics of the fractional-order Lü system and its synchronization,” Physics Letters, Section A, vol. 354, no. 4, pp. 305–311, 2006.
  • D. Matignon, “Stability results for fractional differential equations with applications to control processing,” in Proceedings of the IEEE-SMC Computational Engineering in Systems and Application multiconference (IMACS '96), vol. 2, pp. 963–968, Lille, France, July 1996.
  • M. S. Tavazoei and M. Haeri, “Chaotic attractors in incommensurate fractional order systems,” Physica D, vol. 237, no. 20, pp. 2628–2637, 2008.
  • M. S. Tavazoei and M. Haeri, “A necessary condition for double scroll attractor existence in fractional-order systems,” Physics Letters, Section A, vol. 367, no. 1-2, pp. 102–113, 2007.