## International Journal of Differential Equations

- Int. J. Differ. Equ.
- Volume 2011Special Issue (2011), Article ID 231920, 12 pages.

### An Explicit Numerical Method for the Fractional Cable Equation

J. Quintana-Murillo and S. B. Yuste

**Full-text: Open access**

#### Abstract

An explicit numerical method to solve a fractional cable equation which involves two temporal Riemann-Liouville derivatives is studied. The numerical difference scheme is obtained by approximating the first-order derivative by a forward difference formula, the Riemann-Liouville derivatives by the Grünwald-Letnikov formula, and the spatial derivative by a three-point centered formula. The accuracy, stability, and convergence of the method are considered. The stability analysis is carried out by means of a kind of von Neumann method adapted to fractional equations. The convergence analysis is accomplished with a similar procedure. The von-Neumann stability analysis predicted very accurately the conditions under which the present explicit method is stable. This was thoroughly checked by means of extensive numerical integrations.

#### Article information

**Source**

Int. J. Differ. Equ., Volume 2011Special Issue (2011), Article ID 231920, 12 pages.

**Dates**

Received: 27 April 2011

Accepted: 30 June 2011

First available in Project Euclid: 26 January 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.ijde/1485399984

**Digital Object Identifier**

doi:10.1155/2011/231920

**Mathematical Reviews number (MathSciNet)**

MR2832509

**Zentralblatt MATH identifier**

1237.65097

#### Citation

Quintana-Murillo, J.; Yuste, S. B. An Explicit Numerical Method for the Fractional Cable Equation. Int. J. Differ. Equ. 2011 (2011), Article ID 231920, 12 pages. doi:10.1155/2011/231920. https://projecteuclid.org/euclid.ijde/1485399984

#### References

- R. Klages, G. Radons, and I. M. Sokolov, Eds.,
*Anomalous Transport: Foundations and Applications*, Elsevier, Amsterdam, The Netherlands, 2008.Zentralblatt MATH: 1190.05064 - I. Podlubny,
*Fractional Differential Equations*, vol. 198, Academic Press, San Diego, Calif, USA, 1999.Zentralblatt MATH: 1056.93542 - R. Hilfer, Ed.,
*Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 2000.Zentralblatt MATH: 1046.82009 - A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,
*Theory and Applications of Fractional Differential Equations*, vol. 204, Elsevier, Amsterdam, The Netherlands, 2006.Zentralblatt MATH: 1206.26007 - R. L. Magin, O. Abdullah, D. Baleanu, and X. J. Zhou, “Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation,”
*Journal of Magnetic Resonance*, vol. 190, no. 2, pp. 255–270, 2008. - D. Baleanu, “Fractional variational principles in action,”
*Physica Scripta*, vol. 2009, no. T136, Article ID 014006, 4 pages, 2009. - S. B. Yuste and L. Acedo, “Some exact results for the trapping of subdiffusive particles in one dimension,”
*Physica A*, vol. 336, no. 3-4, pp. 334–346, 2004. - S. B. Yuste and K. Lindenberg, “Trapping reactions with subdiffusive traps and particles characterized by different anomalous diffusion exponents,”
*Physical Review E*, vol. 72, no. 6, Article ID 061103, 8 pages, 2005. - S. B. Yuste and K. Lindenberg, “Subdiffusive target problem: survival probability,”
*Physical Review E*, vol. 76, no. 5, Article ID 051114, 6 pages, 2007.Mathematical Reviews (MathSciNet): MR2495355

Digital Object Identifier: doi:10.1103/PhysRevE.76.051114 - R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,”
*Physics Reports*, vol. 339, no. 1, p. 77, 2000.Zentralblatt MATH: 0984.82032 - R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,”
*Journal of Physics A*, vol. 37, no. 31, pp. R161–R208, 2004.Zentralblatt MATH: 1075.82018 - R. Metzler, E. Barkai, and J. Klafter, “Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach,”
*Physical Review Letters*, vol. 82, no. 18, pp. 3563–3567, 1999. - S. B. Yuste, E. Abad, and K. Lindenberg, “A reaction-subdiffusion model of morphogen gradient formation,”
*Physical Review E*, vol. 82, no. 6, Article ID 061123, 9 pages, 2010. - J. A. Dix and A. S. Verkman, “Crowding effects on diffusion in solutions and cells,”
*Annual Review of Biophysics*, vol. 37, pp. 247–263, 2008. - I. Y. Wong, M. L. Gardel, D. R. Reichman et al., “Anomalous Diffusion Probes Microstructure Dynamics of Entangled F-Actin Networks,”
*Physical Review Letters*, vol. 92, no. 17, Article ID 178101, 4 pages, 2004. - J.-H. Jeon, V. Tejedor, S. Burov et al., “In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules,”
*Physical Review Letters*, vol. 106, no. 4, Article ID 048103, 4 pages, 2011. - T. A. M. Langlands, B. I. Henry, and S. L. Wearne, “Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions,”
*Journal of Mathematical Biology*, vol. 59, no. 6, pp. 761–808, 2009. - B. I. Henry, T. A. M. Langlands, and S. L. Wearne, “Fractional cable models for spiny neuronal dendrites,”
*Physical Review Letters*, vol. 100, no. 12, Article ID 128103, p. 4, 2008. - A. Compte and R. Metzler, “The generalized Cattaneo equation for the description of anomalous transport processes,”
*Journal of Physics A*, vol. 30, no. 21, pp. 7277–7289, 1997.Zentralblatt MATH: 0941.82046 - R. Metzler and T. F. Nonnenmacher, “Fractional diffusion, waiting-time distributions, and Cattaneo-type equations,”
*Physical Review E*, vol. 57, no. 6, pp. 6409–6414, 1998.Mathematical Reviews (MathSciNet): MR1628238

Digital Object Identifier: doi:10.1103/PhysRevE.57.6409 - S. S. Ray, “Exact solutions for time-fractional diffusion-wave equations by decomposition method,”
*Physica Scripta*, vol. 75, no. 1, pp. 53–61, 2007.Zentralblatt MATH: 1197.35147

Mathematical Reviews (MathSciNet): MR2299207

Digital Object Identifier: doi:10.1088/0031-8949/75/1/008 - S. Momani, A. Odibat, and V. S. Erturk, “Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation,”
*Physics Letters. A*, vol. 370, no. 5-6, pp. 379–387, 2007.Zentralblatt MATH: 1209.35066 - H. Jafari and S. Momani, “Solving fractional diffusion and wave equations by modified homotopy perturbation method,”
*Physics Letters. A*, vol. 370, no. 5-6, pp. 388–396, 2007.Zentralblatt MATH: 1209.65111 - A. M. A. El-Sayed and M. Gaber, “The Adomian decomposition method for solving partial differential equations of fractal order in finite domains,”
*Physics Letters A*, vol. 359, no. 3, pp. 175–182, 2006. - I. Podlubny, A. V. Chechkin, T. Skovranek, Y. Chen, and B. M. Vinagre Jara, “Matrix approach to discrete fractional calculus. II. Partial fractional differential equations,”
*Journal of Computational Physics*, vol. 228, no. 8, pp. 3137–3153, 2009.Zentralblatt MATH: 1160.65308 - E. Barkai, “Fractional Fokker-Planck equation, solution, and application,”
*Physical Review E*, vol. 63, no. 4, Article ID 046118, 17 pages, 2001. - M. Enelund and G. A. Lesieutre, “Time domain modeling of damping using anelastic displacement fields and fractional calculus,”
*International Journal of Solids and Structures*, vol. 36, no. 29, pp. 4447–4472, 1999.Zentralblatt MATH: 0943.74008 - G. J. Fix and J. P. Roop, “Least squares finite-element solution of a fractional order two-point boundary value problem,”
*Computers & Mathematics with Applications. An International Journal*, vol. 48, no. 7-8, pp. 1017–1033, 2004.Zentralblatt MATH: 1069.65094 - Y. Zheng, C. Li, and Z. Zhao, “A note on the finite element method for the space-fractional advection diffusion equation,”
*Computers & Mathematics with Applications*, vol. 59, no. 5, pp. 1718–1726, 2010.Zentralblatt MATH: 1189.65288 - Y. Zheng, C. Li, and Z. Zhao, “A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation,”
*Mathematical Problems in Engineering*, vol. 2010, Article ID 279038, p. 26, 2010.Zentralblatt MATH: 1202.65157 - R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, “Time fractional diffusion: a discrete random walk approach,”
*Nonlinear Dynamics*, vol. 29, no. 1–4, pp. 129–143, 2002.Zentralblatt MATH: 1009.82016 - S. B. Yuste and L. Acedo, “An explicit finite difference method and a new včommentComment on ref. [32?]: This reference is a repetition of [33?]. Please check.on Neumann-type stability analysis for fractional diffusion equations,”
*SIAM Journal on Numerical Analysis*, vol. 42, no. 5, pp. 1862–1874, 2005.Zentralblatt MATH: 1119.65379 - S. B. Yuste and J. Quintana-Murillo, “On three explicit difference schemes for fractional diffusion and diffusion-wave equations,”
*Physica Scripta*, vol. 2009, no. T136, Article ID 014025, 6 pages, 2009. - S. B. Yuste, “Weighted average finite difference methods for fractional diffusion equations,”
*Journal of Computational Physics*, vol. 216, no. 1, pp. 264–274, 2006.Zentralblatt MATH: 1094.65085 - J. Quintana-Murillo and S. B. Yuste, “An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form,”
*Journal of Computational and Nonlinear Dynamics*, vol. 6, no. 2, Article ID 021014, 6 pages, 2011. - C. M. Chen, F. Liu, I. Turner, and V. Anh, “A Fourier method for the fractional diffusion equation describing sub-diffusion,”
*Journal of Computational Physics*, vol. 227, no. 2, pp. 886–897, 2007.Zentralblatt MATH: 1165.65053

Mathematical Reviews (MathSciNet): MR2442379

Digital Object Identifier: doi:10.1016/j.jcp.2007.05.012 - P. Zhuang, F. Liu, V. Anh, and I. Turner, “New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation,”
*SIAM Journal on Numerical Analysis*, vol. 46, no. 2, pp. 1079–1095, 2008.Zentralblatt MATH: 1173.26006 - F. Liu, Q. Yang, and I. Turner, “Stability and convergence of two new implicit numerical methods for the fractional cable equation,”
*Journal of Computational and Nonlinear Dynamics*, vol. 6, no. 1, Article ID 01109, 7 pages, 2011. - K. W. Morton and D. F. Mayers,
*Numerical Solution of Partial Differential Equations*, Cambridge University Press, Cambridge, UK, 1994. - Ch. Lubich, “Discretized fractional calculus,”
*SIAM Journal on Mathematical Analysis*, vol. 17, no. 3, pp. 704–719, 1986.Zentralblatt MATH: 0624.65015 - A. M. Mathai and R. K. Saxena,
*The H-Function with Applications in Statistics and Other Disciplines*, John Wiley & Sons, New York, NY, USA, 1978.Zentralblatt MATH: 0382.33001 - M. Cui, “Compact finite difference method for the fractional diffusion equation,”
*Journal of Computational Physics*, vol. 228, no. 20, pp. 7792–7804, 2009.Zentralblatt MATH: 1179.65107

### More like this

- Fourth-Order Compact Difference Schemes for the Riemann-Liouville and Riesz Derivatives

Zhang, Yuxin, Ding, Hengfei, and Luo, Jincai, Abstract and Applied Analysis, 2014 - Time evolution of the approximate and stationary solutions of the Time-Fractional Forced-Damped-Wave equation

El-Sayed, A. M. A., Abdel-Rehim, E. A., and Hashem, A. S., Tbilisi Mathematical Journal, 2017 - Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term

Ding, Hengfei and Li, Changpin, Abstract and Applied Analysis, 2013

- Fourth-Order Compact Difference Schemes for the Riemann-Liouville and Riesz Derivatives

Zhang, Yuxin, Ding, Hengfei, and Luo, Jincai, Abstract and Applied Analysis, 2014 - Time evolution of the approximate and stationary solutions of the Time-Fractional Forced-Damped-Wave equation

El-Sayed, A. M. A., Abdel-Rehim, E. A., and Hashem, A. S., Tbilisi Mathematical Journal, 2017 - Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term

Ding, Hengfei and Li, Changpin, Abstract and Applied Analysis, 2013 - Superconvergence of FEM for Distributed Order Time Fractional Variable Coefficient Diffusion Equations

Yang, Yanhua and Ren, Jincheng, Taiwanese Journal of Mathematics, 2018 - Numerical Treatment of the Modified Time Fractional Fokker-Planck Equation

Zhang, Yuxin, Abstract and Applied Analysis, 2014 - A New Grünwald-Letnikov Derivative Derived from a Second-Order Scheme

Jacobs, B. A., Abstract and Applied Analysis, 2015 - Theory Analysis of Left-Handed Grünwald-Letnikov Formula with 0 < α < 1 to Detect and Locate Singularities

Hu, Shaoxiang and Liang, Ping, Abstract and Applied Analysis, 2013 - A New Definition of Fractional Derivatives Based on Truncated Left-Handed Grünwald-Letnikov Formula with 0 < α < 1 and Median Correction

Liao, Zhiwu, Abstract and Applied Analysis, 2013 - Numerical Simulations for the Space-Time Variable Order Nonlinear Fractional Wave Equation

Sweilam, Nasser Hassan and Assiri, Taghreed Abdul Rahman, Journal of Applied Mathematics, 2013 - On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative

Merdan, Mehmet, International Journal of Differential Equations, 2012