International Journal of Differential Equations

Solutions of the Force-Free Duffing-van der Pol Oscillator Equation

Najeeb Alam Khan, Muhammad Jamil, Syed Anwar Ali, and Nadeem Alam Khan

Full-text: Open access

Abstract

A new approximate method for solving the nonlinear Duffing-van der pol oscillator equation is proposed. The proposed scheme depends only on the two components of homotopy series, the Laplace transformation and, the Padé approximants. The proposed method introduces an alternative framework designed to overcome the difficulty of capturing the behavior of the solution and give a good approximation to the solution for a large time. The Runge-Kutta algorithm was used to solve the governing equation via numerical solution. Finally, to demonstrate the validity of the proposed method, the response of the oscillator, which was obtained from approximate solution, has been shown graphically and compared with that of numerical solution.

Article information

Source
Int. J. Differ. Equ., Volume 2011, Special Issue (2011), Article ID 852919, 9 pages.

Dates
Received: 31 May 2011
Revised: 5 August 2011
Accepted: 22 August 2011
First available in Project Euclid: 26 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijde/1485399951

Digital Object Identifier
doi:10.1155/2011/852919

Mathematical Reviews number (MathSciNet)
MR2847594

Zentralblatt MATH identifier
1239.34015

Citation

Khan, Najeeb Alam; Jamil, Muhammad; Ali, Syed Anwar; Khan, Nadeem Alam. Solutions of the Force-Free Duffing-van der Pol Oscillator Equation. Int. J. Differ. Equ. 2011, Special Issue (2011), Article ID 852919, 9 pages. doi:10.1155/2011/852919. https://projecteuclid.org/euclid.ijde/1485399951


Export citation

References

  • M. Rafei, D. D. Ganji, H. Daniali, and H. Pashaei, “The variational iteration method for nonlinear oscillators with discontinuities,” Journal of Sound and Vibration, vol. 305, no. 4-5, pp. 614–620, 2007.
  • Z. M. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27–34, 2006.
  • T. Öziş and A. Yildirim, “A study of nonlinear oscillators with ${u}^{1/3}$ force by He's variational iteration method,” Journal of Sound and Vibration, vol. 306, no. 1-2, pp. 372–376, 2007.
  • A. Beléndez, C. Pascual, M. Ortuño, T. Beléndez, and S. Gallego, “Application of a modified He's homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities,” Nonlinear Analysis, vol. 10, no. 2, pp. 601–610, 2009.
  • J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287–292, 2004.
  • A. Beléndez, A. Hernández, T. Beléndez, E. Fernández, M. L. Álvarez, and C. Neipp, “Application of he's homotopy perturbation method to the duffin-harmonic oscillator,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 1, pp. 79–88, 2007.
  • N. A. Khan, M. Jamil, and A. Ara, “Multiple-parameter Hamiltonian approach for higher accurate approximations of a nonlinear oscillator with discontinuity,” International Journal of Differential Equations, vol. 2011, Article ID 649748, 7 pages, 2011.
  • H. M. Liu, “Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-Poincare method,” Chaos, Solitons & Fractals, vol. 23, no. 2, pp. 577–579, 2005.
  • J. H. He, “Variational approach for nonlinear oscillators,” Chaos, Solitons & Fractals, vol. 34, no. 5, pp. 1430–1439, 2007.
  • D. H. Shou, “Variational approach to the nonlinear oscillator of a mass attached to a stretched wire,” Physica Scripta, vol. 77, no. 4, Article ID 045006, 2008.
  • F. Ö. Zengin, M. O. Kaya, and S. A. Demirba\vg, “Application of parameter-expansion method to nonlinear oscillators with discontinuities,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 3, pp. 267–270, 2008.
  • J. H. He, “Max-min approach to nonlinear oscillators,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 2, pp. 207–210, 2008.
  • Z. Guo and A. Y. T. Leung, “The iterative homotopy harmonic balance method for conservative Helmholtz-Duffing oscillators,” Applied Mathematics and Computation, vol. 215, no. 9, pp. 3163–3169, 2010.
  • A. E. Ebaid, “A reliable aftertreatment for improving the differential transformation method and its application to nonlinear oscillators with fractional nonlinearities,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 1, pp. 528–536, 2011.
  • V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, “New aspects of integrability of force-free Duffing-van der Pol oscillator and related nonlinear systems,” Journal of Physics: A, vol. 37, no. 16, pp. 4527–4534, 2004.
  • S. Mukherjee, B. Roy, and S. Dutta, “Solution of the Duffing-van der pol oscillator equation by a differential transform method,” Physica Scripta, vol. 83, Article ID 015006, 2011.
  • N. A. Khan, A. Ara, S. A. Ali, and A. Mahmood, “Analytical study of Navier-Stokes equation with fractional orders using He's homotopy perturbation and variational iteration methods,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 9, pp. 1127–1134, 2009.
  • N. A. Khan, A. Ara, and A. Mahmood, “Approximate solution of time-fractional chemical engineering equations: a comparative study,” International Journal of Chemical Reactor Engineering, vol. 8, article A19, 2010.
  • N. A. Khan, M. Jamil, and A. Ara, “An efficient approach for solving the Riccati equation with fractional orders,” Computers and Mathematics with Applications, vol. 61, pp. 2683–2689, 2011.
  • M. Madani and M. Fathizadeh, “Homotopy perturbation algorithm using Laplace transformation,” Nonlinear Science Letters: A, vol. 1, pp. 263–267, 2010.
  • N. A. Khan, M. Jamil, A. Ara, and N.-U. Khan, “On efficient method for system of fractional differential equations,” Advances in Difference Equations, Article ID 303472, 15 pages, 2011.