International Journal of Differential Equations

A Nonlinear Differential Equation Related to the Jacobi Elliptic Functions

Kim Johannessen

Full-text: Open access

Abstract

A nonlinear differential equation for the polar angle of a point of an ellipse is derived. The solution of this differential equation can be expressed in terms of the Jacobi elliptic function dn(u,k). If the polar angle is extended to the complex plane, the Jacobi imaginary transformation properties and the dependence on the real and complex quarter periods can be described. From the differential equation of the polar angle, exact solutions of the Poisson Boltzmann and the sinh-Poisson equations are found in terms of the Jacobi elliptic functions.

Article information

Source
Int. J. Differ. Equ., Volume 2012 (2012), Article ID 412569, 9 pages.

Dates
Received: 3 May 2012
Accepted: 6 August 2012
First available in Project Euclid: 24 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijde/1485226829

Digital Object Identifier
doi:10.1155/2012/412569

Mathematical Reviews number (MathSciNet)
MR2968001

Zentralblatt MATH identifier
1269.34005

Citation

Johannessen, Kim. A Nonlinear Differential Equation Related to the Jacobi Elliptic Functions. Int. J. Differ. Equ. 2012 (2012), Article ID 412569, 9 pages. doi:10.1155/2012/412569. https://projecteuclid.org/euclid.ijde/1485226829


Export citation

References

  • Z. Fu, S. Liu, S. Liu, and Q. Zhao, “New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations,” Physics Letters A, vol. 290, no. 1-2, pp. 72–76, 2001.
  • Á. Martín Sánchez, J. Díaz Bejarano, and D. Caceres Marzal, “Solution of the anharmonic quartic potential oscillator problem,” Journal of Sound and Vibration, vol. 161, no. 1, pp. 19–31, 1993.
  • A. Belendez, C. Pascual, D. I. Mendez, T. Belendez, and C. Neipp, “Exact solution for the nonlinear pendulum,” Revista Brasileira de Ensino de Fisica, vol. 29, no. 4, pp. 645–648, 2007.
  • S. H. Behrens and M. Borkovec, “Exact Poisson Boltzmann solution for the interaction of dissimilar charge-regulating surfaces,” Physical Review E, vol. 60, no. 6, pp. 7040–7048, 1999.
  • D. Gurarie and K. W. Chow, “Vortex arrays for sinh-Poisson equation of two-dimensional fluids: equilibria and stability,” Physics of Fluids, vol. 16, no. 9, pp. 3296–3305, 2004.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 4th edition, 1980.
  • L. M. Milne-Thomson, Handbook of Mathematical Functions, Dover Publications, New York, NY, USA, 1972, Edited by: M. Abramowitz and I. A. Stegun.