International Journal of Differential Equations

Direct Method for Resolution of Optimal Control Problem with Free Initial Condition

Louadj Kahina and Aidene Mohamed

Full-text: Open access

Abstract

The theory of control analyzes the proprieties of commanded systems. Problems of optimal control (OC) have been intensively investigated in the world literature for over forty years. During this period, series of fundamental results have been obtained, among which should be noted the maximum principle (Pontryagin et al., 1962) and dynamic programming (Bellman, 1963). For many of the problems of the optimal control theory (OCT), adequate solutions are found (Bryson and Yu-chi, 1969, Lee and Markus, 1967, Gabasov and Kirillova, 1977, 1978, 1980). Results of the theory were taken up in various fields of science, engineering, and economics. The present paper aims at extending the constructive methods of Balashevich et al., (2000) that were developed for the problems of optimal control with the bounded initial state is not fixed are considered.

Article information

Source
Int. J. Differ. Equ., Volume 2012 (2012), Article ID 173634, 18 pages.

Dates
Received: 22 September 2011
Accepted: 3 November 2011
First available in Project Euclid: 24 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijde/1485226819

Digital Object Identifier
doi:10.1155/2012/173634

Mathematical Reviews number (MathSciNet)
MR2898147

Zentralblatt MATH identifier
1248.49043

Citation

Kahina, Louadj; Mohamed, Aidene. Direct Method for Resolution of Optimal Control Problem with Free Initial Condition. Int. J. Differ. Equ. 2012 (2012), Article ID 173634, 18 pages. doi:10.1155/2012/173634. https://projecteuclid.org/euclid.ijde/1485226819


Export citation

References

  • L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, and E. F. Mischenko, The Mathematical Theory of Optimal Processes, Interscience, New York, NY, USA, 1962.\setlengthemsep1.5pt
  • R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, USA, 1963.
  • R. E. Bellman, I. Glicksberg, and O. A. Gross, “Some aspects of the mathematical theory of control processes,” Tech. Rep. R-313, Rand Corporation, Santa Monica, Calif, USA, 1958.
  • R. Gabasov, F. M. Kirillova, and N. S. Pavlenok, “Optimization of dynamical systems by using dynamical controllers,” Automatica i Telemekh, vol. 5, pp. 8–28, 2004.
  • E. Trélat, Contrôle optimal : Théorie et applications, Mathématiques Concêtes, Vuibert, Paris, France, 2005.
  • E. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, NY, USA, 1967.
  • N. V. Balashevich, R. Gabasov, and F. M. Kirillova, “Numerical methods for program and positional optimization of linear control systems,” Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, vol. 40, no. 6, pp. 838–859, 2000.
  • R. Gabasov and F. M. Kirillova, Linear Programming čommentComment on ref. [7a: We split this reference to ?,7b, 7c?]. Please check. Methods}, vol. 1, Byelorussian State University Publishing House, Minsk, Russia, 1977.
  • R. Gabasov and F. M. Kirillova, Linear Programming Methods, vol. 2, Byelorussian State University Publishing House, Minsk, Russia, 1978.
  • R. Gabasov and F. M. Kirillova, Linear Programming Methods, vol. 3, Byelorussian State University Publishing House, Minsk, Russia, 1980.
  • M. Aiden, I. L. Vorob'ev, and B. Oukacha, “An algorithm for solving a linear optimal control problem with a minimax performance index,” Computational Mathematics and Mathematical Physics, vol. 45, no. 10, pp. 1691–1700, 2005.
  • R. Gabasov, N. V. Balashevich, and F. M. Kirillova, “On the synthesis problem for optimal control systems,” SIAM Journal on Control and Optimization, vol. 39, no. 4, pp. 1008–1042, 2000.
  • R. Gabasov and F. M. Kirillova, Constructive Methods of Optimization, part 2, University Press, Minsk, Russia, 1984.
  • A. E. Bryson and H. O. Yu-Chi, Applied Optimal Control, Blaisdell, Toronto, Canada, 1969.
  • H. Maurer, C. Büskens, J. H. R. Kim, and C. Y. Kaya, “Optimization methods for the verification of second order sufficient conditions for bang-bang controls,” Optimal Control Applications and Methods, vol. 26, no. 3, pp. 129–156, 2005.
  • L. Poggialini, “On local state optimality of bang-bang extremals in a free horizon Bolza problem,” Rendiconti del Seminario Matematico dell'Universitá e del Politecnico di Torino, vol. 63, no. 4, 2005.
  • K. Louadj and M. Aidene, “Optimization of a problem of optimal control with free initial state,” Applied Mathematical Sciences, vol. 4, no. 5, pp. 201–216, 2010.
  • R. Gabasov and F. M. Kirillova, “Adaptive method of solving linear programing problems,” Preprints Series, University of Karlsruhe, Institute for Satistics and Mathematics, 1994.
  • R. Gabasov, F. M. Kirillova, and N. S. Pavlenok, “Optimal discrete-impulse control of linear systems,” Automation and Remote Control, vol. 69, no. 3, pp. 443–462, 2008.