Innovations in Incidence Geometry

The universal representation group of Huybrechts's dimensional dual hyperoval

Alberto Del Fra and Antonio Pasini

Full-text: Open access

Abstract

A d -dimensional dual hyperoval can be regarded as the image S = ρ ( Σ ) of a full d -dimensional projective embedding ρ of a dual circular space Σ . The affine expansion Exp ( ρ ) of ρ is a semibiplane and its universal cover is the expansion of the abstract hull ρ ˜ of ρ .

In this paper we consider Huybrechts’s dual hyperoval, namely ρ ( Σ ) where Σ is the dual of the affine space AG ( n , 2 ) PG ( n , 2 ) and ρ is induced by the embedding of the line grassmannian of PG ( n , 2 ) in PG n + 1 2 1 , 2 .

It is known that the universal cover of Exp ( ρ ) is a truncation of a Coxeter complex of type D 2 n and that, if U ˜ is the codomain of the abstract hull ρ ˜ of ρ , then U ˜ is a subgroup of the Coxeter group D of type D 2 n , | U ˜ | = 2 2 n 1 but U ˜ is non-commutative. This information does not explain what the structure of U ˜ is and how U ˜ is placed inside D . These questions will be answered in this paper.

Article information

Source
Innov. Incidence Geom., Volume 3, Number 1 (2006), 121-148.

Dates
Received: 15 March 2006
Accepted: 22 May 2006
First available in Project Euclid: 28 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.iig/1551323244

Digital Object Identifier
doi:10.2140/iig.2006.3.121

Mathematical Reviews number (MathSciNet)
MR2267610

Zentralblatt MATH identifier
1229.51008

Subjects
Primary: 20F55: Reflection and Coxeter groups [See also 22E40, 51F15]
Secondary: 15A75: Exterior algebra, Grassmann algebras 51E45 51E20: Combinatorial structures in finite projective spaces [See also 05Bxx]

Keywords
dimensional dual hyperovals semibiplanes embeddings Coxeter groups exterior algebras

Citation

Del Fra, Alberto; Pasini, Antonio. The universal representation group of Huybrechts's dimensional dual hyperoval. Innov. Incidence Geom. 3 (2006), no. 1, 121--148. doi:10.2140/iig.2006.3.121. https://projecteuclid.org/euclid.iig/1551323244


Export citation

References

  • B. Baumeister, T. Meixner and A. Pasini, $\GF(2)$-expansions, Geom. Dedicata 67 (1997), 163–180.
  • B. Baumeister and A. Pasini, On flat flag-transitive $c.c^*$-geometries, J. Algebraic Combin. 6 (1997), 2–26.
  • B. Baumeister and G. Stroth, The non-canonical gluings of two affine spaces, in Groups and Geometries (L. of Martino et al. eds.), Birkhäuser, Basel (1998), 9–28.
  • M. Buratti and A. Del Fra, Semi-Boolean Steiner quadruple systems and dimensional dual hyperovals, Adv. Geom., special issue in honour of Adriano Barlotti (2003), S254–S270.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
  • B. N. Cooperstein and J. A. Thas, On generalized $k$-arcs in $\PG(2n,q)$, Ann. Comb. 5 (2001), 141–152.
  • A. Del Fra, On $d$-dimensional dual hyperovals, Geom. Dedicata 79 (2000), 157–178.
  • A. Del Fra and S. Yoshiara, Dimensional dual hyperovals associated with Steiner systems, European J. Combin. 26 (2005), 173–194.
  • C. Huybrechts, Dimensional dual hyperovals in projective spaces and $c.\AG^*$-geometries, Discrete Math. 255 (2002), 193–223.
  • C. Huybrechts and A. Pasini, Flag-transitive extensions of dual affine spaces, Beitr\Hage zur Algebra und Geometrie, 40 (1999), 503–531.
  • A. V. Ivanov and S. V. Shpectorov, Geometries of Sporadic Groups II. Representations and Amalgams, Cambridge University Press, Cambridge 2002.
  • A. Pasini, Diagram Geometries, Oxford University Press, Oxford 1994.
  • A. Pasini, Embeddings and expansions, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 585–626.
  • A. Pasini and S. Yoshiara, On a new family of flag-transitive semibiplanes, European J. Combin. 22 (2001), 529–545.
  • A. Pasini and S. Yoshiara, New distance regular graphs arising from dimensional dual hyperovals, European J. Combin. 22 (2001), 547–560.
  • J. A. Thas and H. Van Maldeghem, Characterizations of quadric and Hermitian Veroneseans, J. Geom. 76 (2003), 282–293.
  • J. A. Thas and H. Van Maldeghem, Characterizations of the finite quadric Veroneseans ${\cal V}^{2^n}_n$, Quart. J. Oxford 55 (2004), 99–113.
  • S. Yoshiara, A family of $d$-dimensional dual hyperovals in $\PG(2d+1,2)$, European J. Combin. 20 (1999), 489–503.
  • S. Yoshiara, Ambient spaces of dimensional dual arcs, J. Alg. Combin. 19 (2004), 5–23.
  • S. Yoshiara, Dimensional dual arcs. A survey, to appear.