Innovations in Incidence Geometry

About maximal partial 2-spreads in $\mathrm{PG}(3m-1,q)$

Szabolcs L. Fancsali and Péter Sziklai

Full-text: Open access

Abstract

In this article we construct maximal partial 2-spreads in PG ( 8 , q ) of deficiency δ = ( k 1 ) q 2 , where k q 2 + q + 1 and δ = k q 2 + l ( q 2 1 ) + 1 , where k + l q 2 and δ = ( k + 1 ) q 2 + l ( q 2 1 ) + m ( q 2 2 ) + 1 , where k + l + m q 2 . Using these results, we also construct maximal partial 2-spreads in PG ( 3 m 1 , q ) of various deficiencies for m 4 .

Article information

Source
Innov. Incidence Geom., Volume 4 (2006), 89-102.

Dates
Received: 21 December 2005
Accepted: 5 March 2007
First available in Project Euclid: 28 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.iig/1551323226

Digital Object Identifier
doi:10.2140/iig.2006.4.89

Mathematical Reviews number (MathSciNet)
MR2334647

Zentralblatt MATH identifier
1130.51004

Subjects
Primary: 51E23: Spreads and packing problems

Keywords
spread projective space

Citation

Fancsali, Szabolcs L.; Sziklai, Péter. About maximal partial 2-spreads in $\mathrm{PG}(3m-1,q)$. Innov. Incidence Geom. 4 (2006), 89--102. doi:10.2140/iig.2006.4.89. https://projecteuclid.org/euclid.iig/1551323226


Export citation

References

  • A. Gács and T. Szőnyi, On maximal partial spreads in $\PG(n,q)$, Des. Codes Cryptogr. 29 (2003), no. 1-3, 123–129.
  • J. W. P. Hirschfeld and J. A. Thas, General Galois geometries, Clarendon Press, Oxford, 1991.
  • M. Lavrauw, Scattered spaces with respect to spreads, and eggs in finite projective spaces, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2001.
  • L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975), 383–390.