Innovations in Incidence Geometry

The general structure of the projective planes admitting $\mathrm{PSL}(2,q)$ as a collineation group

Alessandro Montinaro

Full-text: Open access

Abstract

Projective planes of order n admitting PSL(2,q), q>3, as a collineation group are investigated for nq2. As a consequence, affine planes of order n admitting PSL(2,q), q>3, as a collineation group are classified for n<q2 and (q,n)(5,16). Finally, a complete classification of the translation planes order n that admitting PSL(2,q), q>3, as a collineation group is obtained for nq2.

Article information

Source
Innov. Incidence Geom., Volume 5, Number 1 (2007), 35-116.

Dates
Received: 14 March 2007
Accepted: 27 September 2007
First available in Project Euclid: 28 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.iig/1551323210

Digital Object Identifier
doi:10.2140/iig.2007.5.35

Mathematical Reviews number (MathSciNet)
MR2401255

Zentralblatt MATH identifier
1155.51005

Subjects
Primary: 20B25: Finite automorphism groups of algebraic, geometric, or combinatorial structures [See also 05Bxx, 12F10, 20G40, 20H30, 51-XX] 51E15: Affine and projective planes

Keywords
projective plane collineation group orbit

Citation

Montinaro, Alessandro. The general structure of the projective planes admitting $\mathrm{PSL}(2,q)$ as a collineation group. Innov. Incidence Geom. 5 (2007), no. 1, 35--116. doi:10.2140/iig.2007.5.35. https://projecteuclid.org/euclid.iig/1551323210


Export citation

References

  • D. M. Bloom, The subgroups of $\PSL(3,q)$ for odd $q$, Trans. Amer. Math. Soc. 127 (1967), 150–178.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups, Oxford University Press 1985.
  • U. Dempwolff, The planes of order $16$ admitting $SL(3,2)$, Rad. Mat. 7 (1991), 123–134.
  • L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Dover, New York, 1958.
  • R. Figueroa, A family of not $(V,l)$-transitive projective planes of order $q^{3}$, $q\not\equiv 1 \bmod 3$ and $q>2$, Math. Z. 181 (1982), 471–479.
  • D. A. Foulser and N. L. Johnson, The translation planes of order $ q^{2}$ that admit $SL(2,q)$ as a collineation group. II. Odd order, J. Geom. 18 (1982), 122–139.
  • ––––, The translation planes of order $q^{2}$ that admit $SL(2,q)$ as a collineation group. I. Even order, J. Algebra 86 (1984), 385–406.
  • R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in $GF(2^{n})$, Ann. Math. 27 (1926), 140–158.
  • C. Hering, On the structure of finite collineation groups of projective planes, Abh. Math. Sem. Univ. Hamburg 49 (1979), 155–182.
  • C. Hering and H. J. Schaeffer, On the new projective planes of R. Figueroa. In: Combinatorial Theory, Proc. Schloss Rauisschholzhausen 1982, D. Jungnickel and K. Wedder (eds), Springer, Berlin, (1982), 187–190.
  • C. Hering and M. Walker, Perspectivities in irreducible collineation groups of projective planes I, Math. Z. 155 (1977), 95–101.
  • ––––, Perspectivities in irreducible collineation groups of projective planes II, J. Statist. Plann. Inference 3 (1979), 151–177.
  • C. Y. Ho, Finite projective planes that admit a strongly collineation group, Can. J. Math. 37 (1985), 579–611.
  • ––––, Involutory collineations of finite planes, Math. Z. 193 (1986), 235–240.
  • C. Y. Ho and A. Gonçalves, On $\PSL(2,q)$ as a totally irregular collineation group, Geom. Dedicata 49 (1994), 1–24.
  • D. R. Hughes and F. C. Piper, Projective Planes, Springer Verlag, New York - Berlin 1973.
  • B. Huppert, Endliche Gruppen I, Springer Verlag, New York - Berlin 1967.
  • N. L. Johnson, The translation planes of order $16$ that admit non-solvable collineation groups, Math. Z. 185 (1984), 355–372.
  • W. M. Kantor, On the structure of collineation group of finite projective planes, Proc. London Math. Soc. 32 (1976), 385–402.
  • W. Liu and J. Li, Finite projective planes admitting a projective linear $\PSL(2,q)$, Linear Algebra Appl. 413 (2006), 121–130.
  • H. Lüneburg, Charakterisierungen der endlichen Desarguesschen projectiven Ebenen, Math. Z. 85 (1964), 419–450.
  • ––––, Characterization of the Generalized Hughes Planes, Can. J. Math. 28 (1976), 376–402.
  • A. Montinaro, Large doubly transitive orbits on a line, J. Austral. Math. Soc. (to appear)
  • G. E. Moorhouse, $\PSL(2,q)$ as a collineation group of projective planes of small order, Geom. Dedicata 31 (1989), 63–88.
  • A. Reifart and G. Stroth, On finite simple groups containing perspectivities, Geom. Dedicata 13 (1982), 7–46.
  • J. C. D. S. Yaqub, On two theorems of Lüneburg, Arch. Math. 17 (1966), 485–488.