Innovations in Incidence Geometry

Codistances in buildings

Bernhard Mühlherr and Hendrik van Maldeghem

Full-text: Open access


A codistance in a building is a twinning of this building with one chamber. We study this local situation and prove that affine Bruhat-Tits buildings defined over p-adic numbers do not admit a codistance.

Article information

Innov. Incidence Geom., Volume 10, Number 1 (2009), 81-91.

Received: 22 December 2007
Accepted: 8 June 2009
First available in Project Euclid: 28 February 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 51E24: Buildings and the geometry of diagrams

twin building $p$-adic building affine building


Mühlherr, Bernhard; van Maldeghem, Hendrik. Codistances in buildings. Innov. Incidence Geom. 10 (2009), no. 1, 81--91. doi:10.2140/iig.2009.10.81.

Export citation


  • P. Abramenko and H. Van Maldeghem, On opposition in spherical buildings and twin buildings, Ann. Combin. 4 (2000), 125–137.
  • ––––, 1-twinnings of buildings, Math. Z. 238 (2001), 187–203.
  • K. Brown, Buildings, Springer, 1989.
  • F. Bruhat and J. Tits, Groupes réductifs sur un corps local, I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5 – 252.
  • A. Devillers, B. Mühlherr and H. Van Maldeghem, Codistances of $3$\dash spherical buildings, preprint.
  • G. Hanssens and H. Van Maldeghem, A universal construction for projective Hjelmslev planes of level $n$, Compositio Math. 71 (1989), 28–294.
  • B. Mühlherr, A rank $2$ characterization of twinnings, European J. Combin. 19 (1998), 603–612.
  • M. A. Ronan, A free construction of buildings with no rank $3$ residues of spherical type, in Buildings and the Geometry of Diagrams (ed. L. Rosati), Como 1984, Lect. Notes in Math. 1181, Springer-Verlag, pp. 242–248, 1986.
  • ––––, Lectures on Buildings, Persp. Math. 7, Academic Press, 1989.
  • ––––, A local approach to twin buildings, preprint.
  • J. Tits, Buildings of Spherical Type and Finite BN-pairs, Lect. Notes in Math. 386, Springer-Verlag, 1974.
  • J. Tits, Immeubles de type affine, in Buildings and the Geometry of Diagrams (ed. L. Rosati), Como 1984, Lect. Notes in Math. 1181, Springer-Verlag, pp. 159–190, 1986.
  • ––––, Twin buildings and groups of Kac-Moody type, in Groups, Combinatorics and Geometry (ed. M. Liebeck and J. Saxl), Durham 1990, London Math. Soc. Lect. Notes Ser. 165, Cambridge University Press, pp. 249–286, 1992.
  • H. Van Maldeghem, Generalized Polygons, Birkhäuser Monogr. Math. 93, 1998.