## Innovations in Incidence Geometry

- Innov. Incidence Geom.
- Volume 11, Number 1 (2010), 187-195.

### Collineation groups with one or two orbits on the set of points not on an oval and its nucleus

Gábor Korchmáros and Antonio Maschietti

#### Abstract

Projective planes of even order admitting a collineation group fixing an oval and having one or two orbits on the set of points not on the oval and its nucleus are investigated.

#### Article information

**Source**

Innov. Incidence Geom., Volume 11, Number 1 (2010), 187-195.

**Dates**

Received: 4 November 2008

Accepted: 16 January 2009

First available in Project Euclid: 28 February 2019

**Permanent link to this document**

https://projecteuclid.org/euclid.iig/1551323089

**Digital Object Identifier**

doi:10.2140/iig.2010.11.187

**Mathematical Reviews number (MathSciNet)**

MR2795062

**Zentralblatt MATH identifier**

1266.51014

**Subjects**

Primary: 51A40: Translation planes and spreads 51E23: Spreads and packing problems

**Keywords**

projective plane collineation group oval

#### Citation

Korchmáros, Gábor; Maschietti, Antonio. Collineation groups with one or two orbits on the set of points not on an oval and its nucleus. Innov. Incidence Geom. 11 (2010), no. 1, 187--195. doi:10.2140/iig.2010.11.187. https://projecteuclid.org/euclid.iig/1551323089