Innovations in Incidence Geometry

A family of 2-arc transitive pentagraphs with unbounded valency

Andries E. Brouwer and Johannes Huizinga

Full-text: Open access

Abstract

We construct polygonal graphs on the points of a generalized polygon in general position with respect to a polarity.

Article information

Source
Innov. Incidence Geom., Volume 13, Number 1 (2013), 141-147.

Dates
Received: 15 May 2012
Accepted: 29 November 2012
First available in Project Euclid: 28 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.iig/1551323047

Digital Object Identifier
doi:10.2140/iig.2013.13.141

Mathematical Reviews number (MathSciNet)
MR3173017

Zentralblatt MATH identifier
1293.05390

Subjects
Primary: 05E18: Group actions on combinatorial structures 20B25: Finite automorphism groups of algebraic, geometric, or combinatorial structures [See also 05Bxx, 12F10, 20G40, 20H30, 51-XX] 51E12: Generalized quadrangles, generalized polygons

Keywords
pentagraphs generalized polygon polarity

Citation

Brouwer, Andries E.; Huizinga, Johannes. A family of 2-arc transitive pentagraphs with unbounded valency. Innov. Incidence Geom. 13 (2013), no. 1, 141--147. doi:10.2140/iig.2013.13.141. https://projecteuclid.org/euclid.iig/1551323047


Export citation

References

  • Xin Gui Fang & C. E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Alg. 27 (1999), 3727–3754.
  • ––––, Finite two-arc transitive graphs admitting a Ree simple group, Comm. Alg. 27 (1999), 3755–3769.
  • A. A. Ivanov, On 2-transitive graphs of girth 5, Europ. J. Comb. 8 (1987), 393–420.
  • S. E. Payne, Symmetric representations of nondegenerate generalized $n$-gons, Proc. Amer. Math. Soc. 19 (1968), 1321–1326.
  • M. Perkel, Bounding the valency of polygonal graphs with odd girth, Canad. J. Math. 31 (1979), 1307–1321.
  • ––––, A characterization of PSL(2,31) and its geometry, Canad. J. Math. 32 (1980), 155–164.
  • ––––, A characterization of $J_1$ in terms of its geometry, Geom. Dedicata 9 (1980), 291–298.
  • ––––, Near-polygonal graphs, Ars Comb. 26A (1988), 149–170.
  • J. Tits, Ovoides et groupes de Suzuki, Arch. Math. 13 (1962), 187–198.