Innovations in Incidence Geometry

On topological split Kac-Moody groups and their twin buildings

Tobias Hartnick, Ralf Köhl, and Andreas Mars

Full-text: Open access

Abstract

We prove that a two-spherical split Kac–Moody group over a local field naturally provides a topological twin building in the sense of Kramer. This existence result and the local-to-global principle for twin building topologies combined with the theory of Moufang foundations as introduced and studied by Mühlherr, Ronan, and Tits allows one to immediately obtain a classification of two-spherical split Moufang topological twin buildings whose underlying Coxeter diagram contains no loop and no isolated vertices. we obtain a similar classification for split Moufang topological twin buildings.

Article information

Source
Innov. Incidence Geom., Volume 13, Number 1 (2013), 1-71.

Dates
Received: 24 January 2011
Accepted: 3 October 2013
First available in Project Euclid: 28 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.iig/1551323040

Digital Object Identifier
doi:10.2140/iig.2013.13.1

Mathematical Reviews number (MathSciNet)
MR3173010

Zentralblatt MATH identifier
1295.51017

Citation

Hartnick, Tobias; Köhl, Ralf; Mars, Andreas. On topological split Kac-Moody groups and their twin buildings. Innov. Incidence Geom. 13 (2013), no. 1, 1--71. doi:10.2140/iig.2013.13.1. https://projecteuclid.org/euclid.iig/1551323040


Export citation

References

  • P. Abramenko and K. S. Brown, Buildings, theory and applications, Graduate Texts in Mathematics, vol. 248, Springer, 2008.
  • P. Abramenko and B. Mühlherr, Présentations de certaines $BN$-paires jumelées comme sommes amalgamées, C. R. Acad. Sci. Paris, Série I 327 (1997), 701–706.
  • R. B ödi and L. Kramer, On homomorphisms between generalized polygons, Geom. Dedicata 58 (1995), 1–14.
  • A. Borel and J. Tits, Homomorphismes abstraits de groupes algébriques simples, Annals of Math. 97 (1973), 499–571.
  • K. Burns and R. Spatzier, On topological Tits buildings and their classification, Inst. Hautes Études Sci. Pub. Math. 65 (1987), 5–34.
  • P.-E. Caprace, “Abstract” homomorphisms of (split) Kac–Moody groups, vol. 198, Mem. Amer. Math. Soc., 2009.
  • P.-E. Caprace and B. Mühlherr, Isomorphisms of Kac–Moody groups which preserve bounded subgroups, Adv. Math. 206 (2006), 250–278.
  • P.-E. Caprace and B. Rémy, Groups with a root group datum, Innov. Incidence Geom. 9 (2009), 5–77.
  • Y. de Cornulier, Compactly presented groups, arXiv:1003.3959.
  • T. De Medts and Y. Segev, A course on Moufang sets, Innov. Incidence Geom. 9 (2009), 79–122.
  • S. P. Franklin and B. V. S. Thomas, A survey on $k_\omega$-spaces, Topology Proceedings 2 (1977), 111–124.
  • H. Gl öckner, Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43 (2003), 1–26.
  • H. Glöckner, R. Gramlich and T. Hartnick, Final group topologies, Kac–Moody groups and Pontryagin duality, Israel J. Math. 177 (2010), 49–102.
  • R. Gramlich, M. Horn and B. Mühlherr, Abstract involutions of algebraic groups and of Kac–Moody groups, J. Group Theory 14 (2011), 213–249.
  • T. Grundh öfer, N. Knarr and L. Kramer, Flag-homogeneous compact connected polygons, Geom. Dedicata 55 (1995), 95–114.
  • ––––, Flag-homogeneous compact connected polygons. II, Geom. Dedicata 83 (2000), no. 1-3, 1–29.
  • T. Grundhöfer, L. Kramer, H. Van Maldeghem and R. M. Weiss, Compact totally disconnected Moufang buildings, Tohoku Math. J. 64 (2012), 333–360.
  • O. G. Harrold, Jr., Pseudo-isotopically contractible spaces, Proc. Amer. Math. Soc. 16 (1965), 186–187.
  • T. Hartnick, Moufang topological twin buildings, Master's thesis, Technische Universität Darmstadt (2006).
  • E. Hewitt and K. A. Ross, Abstract harmonic analysis, I, Springer, 1963.
  • M. Horn, Involutions of Kac–Moody groups, Ph.D. thesis, Technische Universität Darmstadt (2009).
  • J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1992.
  • V. G. Kac and D. H. Peterson, Infinite flag varieties and conjugacy theorems, in Proc. Nat. Acad. Sci. USA, vol. 80, 1983, pp. 1778–1782.
  • ––––, Regular function on certain infinite-dimensional groups, Arithmetic and geometry Vol. II, Progr. Math. 36, boston, Birkhäuser.
  • N. Knarr, The nonexistence of certain topological polygons, Forum Math. 2 (1990), 603–612.
  • L. Kramer, Compact Polygons, Ph.D. thesis, Eberhard-Karls-Universität Tübingen (1994).
  • ––––, Loop groups and twin buildings, Geom. Dedicata 92 (2002), 145–178.
  • S. Kumar, Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser, 2002.
  • S. A. Mitchell, Quillen's theorem on buildings and the loops on a symmetric space, Enseign. Math. 34 (1988), 123–166.
  • B. Mühlherr, Locally split and locally finite twin buildings of $2$-spherical type, J. Reine Angew. Math. 511 (1999), 119–143.
  • ––––, Appendix: Finite prolongation in RGD-systems, Innov. Incidence Geometry 13 (2013), 73–78.
  • B. Mühlherr and M. Ronan, Local to global structure in twin buildings, Invent. Math. 122 (1995), 71–81.
  • B. Mühlherr and H. Van Maldeghem, On certain twin buildings over tree diagrams, Bull. Belg. Math. Soc. Simon Stevin 5 (1998), no. 2-3, 393–402, finite geometry and combinatorics (Deinze, 1997). http://projecteuclid.org/getRecord?id=euclid.bbms/1103409019
  • B. Rémy, Groupes de Kac–Moody déployés et presque déployés, Astérisque, vol. 277, Société mathématique de France, 2002.
  • M. A. Ronan, Local isometries of twin buildings, Math. Z. 234 (2000), no. 3, 435–455.
  • M. A. Ronan and J. Tits, Building buildings, Math. Ann. 278 (1987), 291–306.
  • ––––, Twin trees. II. Local structure and a universal construction, Israel J. Math. 109 (1999), 349–377.
  • H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen and M. Stroppel, Compact projective planes, de Gruyter Expositions in Mathematics, vol. 21, Walter de Gruyter & Co., Berlin, 1995.
  • E. H. Spanier, Algebraic topology, McGraw-Hill Book Company, New York, 1966.
  • R. Steinberg, Lectures on Chevalley groups, Yale University, 1968, mimeographed lecture notes.
  • F. G. Timmesfeld, Abstract root subgroups and simple groups of Lie type, Monographs in Mathematics, vol. 95, Birkhäuser Verlag, Basel, 2001.
  • J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin, 1974.
  • ––––, A local approach to buildings, in The Geometric Vein – The Coxeter Festschrift (eds. C. Davis, B. Grünbaum and F. A. Sherk), Springer, New York, 1981, pp. 519–547.
  • ––––, Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra 105 (1987), 542–573.
  • ––––, Twin buildings and groups of Kac–Moody type, in Groups, combinatorics & geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 249–286.
  • J. Tits and R. M. Weiss, Moufang polygons, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002.
  • A. Weil, Basic number theory, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the second (1973) edition.