Innovations in Incidence Geometry

$\alpha$-Flokki and Partial $\alpha$-Flokki

William E. Cherowitzo, Norman L. Johnson, and Oscar Vega

Full-text: Open access

Abstract

Connections are made between deficiency one α-flokki and Baer groups of associated α-flokki translation planes, extending the theory of Johnson and Payne–Thas. The full collineation group of an α-flokki is completely determined. Many of the ideas are extended to the infinite case.

Article information

Source
Innov. Incidence Geom., Volume 15, Number 1 (2017), 5-29.

Dates
Received: 16 November 2014
Accepted: 11 February 2015
First available in Project Euclid: 28 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.iig/1551323008

Digital Object Identifier
doi:10.2140/iig.2017.15.5

Mathematical Reviews number (MathSciNet)
MR3713355

Zentralblatt MATH identifier
06847108

Subjects
Primary: 05B25: Finite geometries [See also 51D20, 51Exx] 51A40: Translation planes and spreads 51E20: Combinatorial structures in finite projective spaces [See also 05Bxx]

Keywords
$\alpha$-flokki Baer subgroup translation plane

Citation

Cherowitzo, William E.; Johnson, Norman L.; Vega, Oscar. $\alpha$-Flokki and Partial $\alpha$-Flokki. Innov. Incidence Geom. 15 (2017), no. 1, 5--29. doi:10.2140/iig.2017.15.5. https://projecteuclid.org/euclid.iig/1551323008


Export citation

References

  • M. Biliotti and N.L. Johnson, Bilinear flocks of quadratic cones, J. Geom. 64 (1999), no. 1–2, 16–50.
  • W. Büttner, On translation planes containing $Sz(q)$ in their translation complement, Geom. Dedicata 11 (1981), no. 3, 315–327.
  • W.E. Cherowitzo and N.L. Johnson, Net replacements in the Hughes–Kleinfeld semifield planes. J. Geom. 97 (2010), 45–57.
  • W.E. Cherowitzo and L. Holder, Bilinear Flocks. J. Geom. 105 (2014), no 3, 625–634.
  • D.A. Foulser, Baer $p$-elements in translation planes, J. Algebra 31 (1974), 354–366.
  • V. Jha and N.L. Johnson, Lifting quasifibrations II. Non-normalizing Baer involutions. Note Mat. 20, n. 2, 2000/2001, 51–68.
  • N.L. Johnson, Flocks and partial flocks of quadric sets, Finite Geometries and Combinatorial Designs (Lincoln, NE, 1987), Contemp. Math., vol. 111, Amer. Math. Soc., Providence, RI, 1990, no. 3–4, 199–215.
  • ––––, Lezioni sui Piani di Traslazione, Quaderni del Departimento di Matematica dell'Università di Lecce, $Q$. 3 (1986) (Italian).
  • ––––, The maximal special linear groups which act on translation planes, Boll. Unione Mat. Ital. A 6 (1986), no. 3, 349–352.
  • N.L. Johnson, V. Jha and M. Biliotti, Handbook of finite translation planes. Pure Appl. Math. (Boca Raton) 289, Chapman & Hall/CRC, Boca Raton, FL, 2007. xxii+861 pp.
  • N.L. Johnson and X. Liu, Flocks of quadratic and semi-elliptic cones, Mostly Finite Geometries (Iowa City, IA, 1996), Lecture Notes in Pure and Appl. Math., vol. 190, Dekker, New York, 1997, pp. 275–304.
  • W. Kantor and T. Penttila, Flokki Planes and Cubic Polynomials. Note Mat. 29 (2009), suppl. n. 1, 211–222.
  • S.E. Payne and J.A. Thas, Conical flocks, partial flocks, derivation, and generalized quadrangles, Geom. Dedicata 38 (1991), no. 2, 229–243.
  • P. Sziklai, Partial flocks of the quadratic cone. J. Combin. Theory Ser. A 113 (2006), no. 4, 698–702.
  • J.A. Thas, Generalized quadrangles and flocks of cones, European J. Combin. 8 (1987), no. 4, 441–452.