Abstract
Denote by $T$ and $I_{\alpha}$ the bilinear Calderón-Zygmund operators and bilinear fractional integrals, respectively. In this paper, it is proved that if $b_{1},b_{2}\in {\rm CMO}$ (the BMO-closure of $C^{\infty}_{c}(\mathbb{R}^n)$), $[\Pi \vec{b},T]$ and $[\Pi\vec{b},I_{\alpha}]$ $(\vec{b}=(b_{1},b_{2}))$ are all compact operators from $\mathcal{M}^{p_{0}}_{\vec{P}}$ (the norm of $\mathcal{M}^{p_{0}}_{\vec{P}}$ is strictly smaller than $2-$fold product of the Morrey norms) to $M^{q_{0}}_{q}$ for some suitable indices $p_{0},p_{1},p_{2}$ and $q_{0},q$. Specially, we also show that if $b_{1}=b_{2}$, then $b_{1}, b_{2}\in {\rm CMO}$ is necessary for the compactness of $[\Pi\vec{b},I_{\alpha}]$ on Morrey space.
Citation
Dinghuai WANG. Jiang ZHOU. Zhidong TENG. "Sharp estimates for commutators of bilinear operators on Morrey type spaces." Hokkaido Math. J. 49 (1) 165 - 199, February 2020. https://doi.org/10.14492/hokmj/1591085016
Information