Hokkaido Mathematical Journal

Classification of polarized manifolds by the second sectional Betti number

Yoshiaki Fukuma

Full-text: Open access

Abstract

Let X be an n-dimensional smooth projective variety defined over the field of complex numbers, let L be an ample and spanned line bundle on X. Then we classify (X,L) with b2(X,L) = h2(X,ℂ)+1, where b2(X,L) is the second sectional Betti number of (X,L).

Article information

Source
Hokkaido Math. J., Volume 42, Number 3 (2013), 463-472.

Dates
First available in Project Euclid: 12 November 2013

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1384273393

Digital Object Identifier
doi:10.14492/hokmj/1384273393

Mathematical Reviews number (MathSciNet)
MR3137396

Zentralblatt MATH identifier
1282.14012

Subjects
Primary: 14C20: Divisors, linear systems, invertible sheaves
Secondary: 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15] 14J30: $3$-folds [See also 32Q25] 14J35: $4$-folds 14J40: $n$-folds ($n > 4$)

Keywords
Polarized manifold ample line bundle adjunction theory sectional Betti number

Citation

Fukuma, Yoshiaki. Classification of polarized manifolds by the second sectional Betti number. Hokkaido Math. J. 42 (2013), no. 3, 463--472. doi:10.14492/hokmj/1384273393. https://projecteuclid.org/euclid.hokmj/1384273393


Export citation