Hokkaido Mathematical Journal

Equivalence problem of second order PDE for scale transformations

Takahiro NODA

Full-text: Open access

Abstract

The purpose of the paper is to consider an equivalence problem of second order partial differential equations for one unknown function of two independent variables under scale transformations. For this equivalence problem, explicit forms of invariant functions are given. In particular, if all of these invariant functions vanish, then PDEs are equivalent to the flat equation.

Article information

Source
Hokkaido Math. J., Volume 40, Number 3 (2011), 313-335.

Dates
First available in Project Euclid: 26 October 2011

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1319595858

Digital Object Identifier
doi:10.14492/hokmj/1319595858

Mathematical Reviews number (MathSciNet)
MR2883493

Zentralblatt MATH identifier
1228.35016

Subjects
Primary: 58A15: Exterior differential systems (Cartan theory)
Secondary: 58A17: Pfaffian systems

Keywords
second order partial differential equations equivalence problem scale transformations G-structure

Citation

NODA, Takahiro. Equivalence problem of second order PDE for scale transformations. Hokkaido Math. J. 40 (2011), no. 3, 313--335. doi:10.14492/hokmj/1319595858. https://projecteuclid.org/euclid.hokmj/1319595858


Export citation