Hokkaido Mathematical Journal

On a class of nonlinear wave equations related to the Dirac-Klein-Gordon system with generalized Yukawa interaction

Nikolaos BOURNAVEAS

Full-text: Open access

Abstract

We study low regularity solutions for a class of nonlinear wave equations. We prove local existence for large data in both the subcritical and critical cases and global existence for small data in the critical case. We apply our results to the study of the Dirac-Klein-Gordon system with generalized Yukawa interaction.

Article information

Source
Hokkaido Math. J., Volume 35, Number 2 (2006), 229-246.

Dates
First available in Project Euclid: 29 September 2010

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1285766356

Digital Object Identifier
doi:10.14492/hokmj/1285766356

Mathematical Reviews number (MathSciNet)
MR2254651

Zentralblatt MATH identifier
1106.35091

Subjects
Primary: 35B45: A priori estimates
Secondary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10] 34L40: Particular operators (Dirac, one-dimensional Schrödinger, etc.)

Keywords
nonlinear wave equations Dirac-Klein-Gordon system Yukawa interaction

Citation

BOURNAVEAS, Nikolaos. On a class of nonlinear wave equations related to the Dirac-Klein-Gordon system with generalized Yukawa interaction. Hokkaido Math. J. 35 (2006), no. 2, 229--246. doi:10.14492/hokmj/1285766356. https://projecteuclid.org/euclid.hokmj/1285766356


Export citation