Hokkaido Mathematical Journal

Multilinear Riesz potential operators on Herz-type spaces and generalized Morrey spaces

Yanlong SHI and Xiangxing TAO

Full-text: Open access

Abstract

Let $m, n$ be integers with $n\geq 2$, $m\geq 1$, the multilinear Riesz potential operators be defined by $$ I_{\alpha}^{(m)}({\bf{f}})(x) = \int_{(\mathbb{R}^{n})^{m}} \frac{f_1(y_1) \dots f_m(y_m)}{| (x-y_1, \dots, x-y_m) |^{mn-\alpha}}d{\bf{y}}, $$ where ${\bf{y}}=(y_1, \dots, y_m)$ and ${\bf{f}}=(f_{1}, \dots, f_{m})$. In the first part of this paper, the boundedness for the operator $I_{\alpha}^{(m)}$ on the homogeneous Herz-Morrey product spaces, $M\dot{K}_{p_1,q_1}^{n(1-1/q_1),\lambda_1}(\mathbb{R}^n) \times\dots\times M\dot{K}_{p_m,q_m}^{n(1-1/q_m),\lambda_m}(\mathbb{R}^n)$, and on the Herz-type Hardy product spaces, $H\dot{K}_{q_1}^{\sigma_1,p_1}(\mathbb{R}^n) \times\dots\times H\dot{K}_{q_m}^{\sigma_m,p_m}(\mathbb{R}^n)$ for $\sigma_i>n(1-1/q_i)$, are established respectively. The second goal of the paper is to extend the known $L^p$-bounded\-ness of $I_\alpha^{(m)}$ to generalized Morrey spaces, $L^{p,\phi}(\mathbb{R}^n)$, where $p\in[1,+\infty)$ and $\phi$ is the suitable doubling and integral functions.

Article information

Source
Hokkaido Math. J., Volume 38, Number 4 (2009), 635-662.

Dates
First available in Project Euclid: 18 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1258554238

Digital Object Identifier
doi:10.14492/hokmj/1258554238

Mathematical Reviews number (MathSciNet)
MR2561954

Zentralblatt MATH identifier
1187.42012

Subjects
Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)
Secondary: 42B25: Maximal functions, Littlewood-Paley theory

Keywords
multilinear fractional integral homogeneous Herz-Morrey space Herz-type hardy space homogeneous Herz space generalized Morrey space

Citation

SHI, Yanlong; TAO, Xiangxing. Multilinear Riesz potential operators on Herz-type spaces and generalized Morrey spaces. Hokkaido Math. J. 38 (2009), no. 4, 635--662. doi:10.14492/hokmj/1258554238. https://projecteuclid.org/euclid.hokmj/1258554238


Export citation