Open Access
July 2020 Pointwise multipliers on weak Orlicz spaces
Ryota Kawasumi, Eiichi Nakai
Hiroshima Math. J. 50(2): 169-184 (July 2020). DOI: 10.32917/hmj/1595901625

Abstract

It is well known that the set of all functions $g$ such that “$f \in L^{p_1}\Rightarrow fg \in L^{p_2}$” is $L^{p_3}$, if $1/p_2 = 1/p_1 + 1/p_3$ with $p_i \in (0,\infty], i = 1, 2, 3$. In this paper we characterize the set of all functions $g$ such that “$f \in \mathrm w L^{\phi_1} \Rightarrow fg \in \mathrm w L^{\phi_2}$”, where $\mathrm w L^{\phi_i}, i = 1, 2$, are weak Orlicz spaces.

Citation

Download Citation

Ryota Kawasumi. Eiichi Nakai. "Pointwise multipliers on weak Orlicz spaces." Hiroshima Math. J. 50 (2) 169 - 184, July 2020. https://doi.org/10.32917/hmj/1595901625

Information

Received: 20 May 2018; Revised: 7 March 2020; Published: July 2020
First available in Project Euclid: 28 July 2020

zbMATH: 07256502
MathSciNet: MR4132586
Digital Object Identifier: 10.32917/hmj/1595901625

Subjects:
Primary: 46E30

Keywords: Orlicz space , pointwise multiplier , weak Orlicz space

Rights: Copyright © 2020 Hiroshima University, Mathematics Program

Vol.50 • No. 2 • July 2020
Back to Top