Hiroshima Mathematical Journal

Information geometry in a global setting

Atsuhide Mori

Full-text: Open access

Abstract

We begin a global study of information geometry. In this article, we describe the geometry of normal distributions by means of positive and negative contact structures associated to the suspension Anosov flows on $Sol^3$-manifolds.

Article information

Source
Hiroshima Math. J., Volume 48, Number 3 (2018), 291-305.

Dates
Received: 6 January 2017
Revised: 8 June 2018
First available in Project Euclid: 8 December 2018

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1544238029

Digital Object Identifier
doi:10.32917/hmj/1544238029

Mathematical Reviews number (MathSciNet)
MR3885263

Zentralblatt MATH identifier
07032359

Subjects
Primary: 57R17: Symplectic and contact topology 57R30: Foliations; geometric theory 62B10: Information-theoretic topics [See also 94A17]

Keywords
Information geometry contact structure foliation

Citation

Mori, Atsuhide. Information geometry in a global setting. Hiroshima Math. J. 48 (2018), no. 3, 291--305. doi:10.32917/hmj/1544238029. https://projecteuclid.org/euclid.hmj/1544238029


Export citation