Hiroshima Mathematical Journal

Besov and Triebel–Lizorkin space estimates for fractional diffusion

Kôzô Yabuta and Minsuk Yang

Full-text: Open access

Abstract

We study Besov and Triebel–Lizorkin space estimates for fractional diffusion. We measure the smoothing effect of the fractional heat flow in terms of the Besov and Triebel–Lizorkin scale. These estimates have many applications to various partial differential equations.

Article information

Source
Hiroshima Math. J., Volume 48, Number 2 (2018), 141-158.

Dates
Received: 29 December 2016
Revised: 7 March 2018
First available in Project Euclid: 1 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1533088828

Digital Object Identifier
doi:10.32917/hmj/1533088828

Mathematical Reviews number (MathSciNet)
MR3835554

Zentralblatt MATH identifier
06965538

Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory
Secondary: 26D10: Inequalities involving derivatives and differential and integral operators

Keywords
fractional diffusion Besov spaces Triebel–Lizorkin spaces

Citation

Yabuta, Kôzô; Yang, Minsuk. Besov and Triebel–Lizorkin space estimates for fractional diffusion. Hiroshima Math. J. 48 (2018), no. 2, 141--158. doi:10.32917/hmj/1533088828. https://projecteuclid.org/euclid.hmj/1533088828


Export citation