Hiroshima Mathematical Journal

On the classification of certain ternary codes of length 12

Makoto Araya and Masaaki Harada

Full-text: Open access

Abstract

Shimada and Zhang studied the existence of polarizations on some supersingular $K3$ surfaces by reducing the existence of the polarizations to that of ternary [12,5] codes satisfying certain conditions. In this note, we give a classification of ternary [12,5] codes satisfying the conditions. To do this, ternary [10,5] codes are classified for minimum weights 3 and 4.

Article information

Source
Hiroshima Math. J., Volume 46, Number 1 (2016), 87-96.

Dates
First available in Project Euclid: 1 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1459525932

Digital Object Identifier
doi:10.32917/hmj/1459525932

Mathematical Reviews number (MathSciNet)
MR3482340

Zentralblatt MATH identifier
1360.94359

Subjects
Primary: 94B05: Linear codes, general
Secondary: 11T71: Algebraic coding theory; cryptography

Keywords
Ternary code classification weight enumerator

Citation

Araya, Makoto; Harada, Masaaki. On the classification of certain ternary codes of length 12. Hiroshima Math. J. 46 (2016), no. 1, 87--96. doi:10.32917/hmj/1459525932. https://projecteuclid.org/euclid.hmj/1459525932


Export citation