Hiroshima Mathematical Journal

On non-periodic 3-Archimedean tilings with 6-fold rotational symmetry

Naoko Kinoshita and Kazushi Komatsu

Full-text: Open access

Abstract

The purpose of this article is to construct a family of uncountably many non-periodic 3-Archimedean tilings with 6-fold rotational symmetry, which admit three types of vertex configurations by regular triangles and squares.

Article information

Source
Hiroshima Math. J., Volume 45, Number 2 (2015), 137-146.

Dates
First available in Project Euclid: 10 August 2015

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1439219705

Digital Object Identifier
doi:10.32917/hmj/1439219705

Mathematical Reviews number (MathSciNet)
MR3378999

Zentralblatt MATH identifier
1327.52036

Subjects
Primary: 52C23: Quasicrystals, aperiodic tilings
Secondary: 52C20: Tilings in $2$ dimensions [See also 05B45, 51M20]

Keywords
Non-periodic tiling rotational symmetry

Citation

Kinoshita, Naoko; Komatsu, Kazushi. On non-periodic 3-Archimedean tilings with 6-fold rotational symmetry. Hiroshima Math. J. 45 (2015), no. 2, 137--146. doi:10.32917/hmj/1439219705. https://projecteuclid.org/euclid.hmj/1439219705


Export citation