Hiroshima Mathematical Journal

On integral quadratic forms having commensurable groups of automorphisms

José María Montesinos-Amilibia

Full-text: Open access

Abstract

We introduce two notions of equivalence for rational quadratic forms. Two $n$-ary rational quadratic forms are commensurable if they possess commensurable groups of automorphisms up to isometry. Two $n$-ary rational quadratic forms $F$ and $G$ are projectivelly equivalent if there are nonzero rational numbers $r$ and $s$ such that $rF$ and $sG$ are rationally equivalent. It is shown that if $F$\ and $G$\ have Sylvester signature $\{-,+,+,...,+\}$ then $F$\ and $G$\ are commensurable if and only if they are projectivelly equivalent. The main objective of this paper is to obtain a complete system of (computable) numerical invariants of rational $n$-ary quadratic forms up to projective equivalence. These invariants are a variation of Conway's $p$-excesses. Here the cases $n$ odd and $n$ even are surprisingly different. The paper ends with some examples

Article information

Source
Hiroshima Math. J., Volume 43, Number 3 (2013), 371-411.

Dates
First available in Project Euclid: 7 January 2014

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1389102581

Digital Object Identifier
doi:10.32917/hmj/1389102581

Mathematical Reviews number (MathSciNet)
MR3161323

Zentralblatt MATH identifier
1307.44008

Subjects
Primary: 11E04: Quadratic forms over general fields 11E20: General ternary and quaternary quadratic forms; forms of more than two variables 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M50: Geometric structures on low-dimensional manifolds 57M60: Group actions in low dimensions

Keywords
Integral quadratic form knot link hyperbolic manifold volume automorph commensurability class

Citation

Montesinos-Amilibia, José María. On integral quadratic forms having commensurable groups of automorphisms. Hiroshima Math. J. 43 (2013), no. 3, 371--411. doi:10.32917/hmj/1389102581. https://projecteuclid.org/euclid.hmj/1389102581


Export citation

References

  • E. Beltrami, Saggio di interpretazione della geometria non-euclidea, Gior. Mat., 6 (1868), 248-312.
  • E. Beltrami, Teoria fondamentale degli spazii di curvatura constante, Annali di Mat. Serie II, 2 (1868), 232-255.
  • L. Bianchi, Ricerche sulle forme quaternarie quadratiche e sui gruppi poliedrici, Annali di Matematica Pura e applicata (2), 21 (1893), 237-288.
  • L. Bianchi, Complemento alle ricerche sulle forme quaternarie quadratiche e sui gruppi poliedrici, Annali di Matematica Pura e applicata (2), 23 (1894), 1-44.
  • A. Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Annals of Math., 75 (1962), 485-535.
  • J. W. S. Cassels, Rational Quadratic Forms, Academic Press, London, New York, San Francisco, 1978.
  • John H. Conway, assisted by Francis Y. C. Fung, The sensual (quadratic) form, Carus Math. Monographs No. 26, MAA, Washington, 1977.
  • J. Elstrodt, F. Grunewald, J. Mennicke, Groups Acting on Hyperbolic Space, Springer monographs in Math., Springer-Verlag, New York, 1997.
  • Hugh M. Hilden, M. T. Lozano, José M. Montesinos-Amilibia, On the Borromean orbifolds: geometry and arithmetic, Topology '90 (Columbus, OH, 1990), 133–167, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992.
  • B. W. Jones, The Arithmetic Theory of Quadratic Forms, Carus Math. Monographs No. 10, MAA, Baltimore,1950.
  • F. Klein, Uber die sogennante nicht-Euklidische Geometrie, Math. Ann. 4 (1871), 573-625.
  • C. Maclachlan, A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Math., 219, Springer-Verlag, New York, 2003.
  • Y. Matsumoto, J. M. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Math., 14 (1) (1991), 181–196.
  • J. M. Montesinos-Amilibia, On the integral and projective equivalence of odd rank integral quadratic forms, (in preparation).
  • J. G. Ratcliffe, Foundations of Hyperbolic Manifolds (Second Edition), Graduate Texts in Math., 149, Springer Verlag, New York, 2006.
  • W. Scharlau and H. Opolka, From Fermat to Minkowski, Springer Verlag, New York, 1985.
  • J. Stillwell, Elements of Number Theory, Springer Verlag, New York, 2003.
  • W. P. Thurston, The geometry and topology of three-manifolds, Princeton University Lectures, 1976–77, available at http://library.msri.org/books/gt3m/

See also

  • See: José María Montesinos-Amilibia. Addendum to "On integral quadratic forms having commensurable groups of automorphisms". Hiroshima Math. J., vol. 44, no. 3 (2014), pp. 341-350.