Hiroshima Mathematical Journal

On the monoid in the fundamental group of type $\mathrm{B_{ii}}$

Tadashi Ishibe

Full-text: Open access


We study the monoid generated by certain Zariski-van Kampen generators in the positive homogeneous presented fundamental group of the complement of the logarithmic free divisor, called the type $\mathrm{B_{ii}}$ in the list by Sekiguchi. Although the monoid is cancellative, it turns out that the monoid is not Gaussian and, hence, is neither Garside nor Artin. Nevertheless, we show that the monoid carries certain particular elements similar to the fundamental elements in Artin monoid. Hence, we can solve the word problem and the conjugacy problem in the monoid and determine the center of it and the explicit form of the growth function for it. As a result, we can also solve the word problem and the conjugacy problem in the fundamental group, and determine the center of it (Theorem 5.8).

Article information

Hiroshima Math. J., Volume 42, Number 1 (2012), 99-114.

First available in Project Euclid: 30 March 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20F05: Generators, relations, and presentations

Monoid fundamental group the word problem the conjugacy problem


Ishibe, Tadashi. On the monoid in the fundamental group of type $\mathrm{B_{ii}}$. Hiroshima Math. J. 42 (2012), no. 1, 99--114. doi:10.32917/hmj/1333113008. https://projecteuclid.org/euclid.hmj/1333113008

Export citation


  • Brieskorn, Egbert: Die Fundamentalgruppe des Raumes der regul$\ddot{a}$ren Orbits einer endlichen komplexen Spiegelungsgruppe, Inventiones Math. 12 (1971) 57-61.
  • Brieskorn, Egbert and Saito, Kyoji: Artin-Gruppen und Coxeter-Gruppen, Inventiones Math. 17 (1972) 245-271, English translation by C. Coleman, R. Corran, J. Crisp, D. Easdown, R. Howlett, D. Jackson and A. Ram at the University of Sydney, 1996..
  • Cheniot, Dennis: Une démonstration du théorème de Zariski sur les sectionshyperplanes d`une hypersurface projective et du théorème de van Kampen sur le groupe fondamental du complémentaire d'une courbe projective plane, Compositio Math. 27 (1973) 141-158.
  • Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, Mathematical Surveys and Monographs 7 (American Mathematical Society, Providence, RI,1961).
  • Deligne, Pierre:
  • Dehornoy, Patric and Paris, Luis: Gaussian groups and Garside groups, two generalization of Artin groups, Proc. London Math. Soc.(3) 79 (1999) 569-604.
  • Garside, F.A.: The braid groups and other groups, Quart. J. Math. Oxford, 2 Ser. 20 (1969), 235-254.
  • M.Gromov: Groups of polynomial growth and expanding maps, IHES Publ.53, (1981), 53-73.
  • M.Gromov: Hyperbolic groups, Essays in group theory, MSRI Publ., Springer, (1987).
  • Hamm, Helmute and Lê Dũng Tráng: Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. 6 (1973) 317-366.
  • Ishibe, Tadashi: The fundamental groups of the complements of free divisors in three variables, Master thesis (in Japanese), 2007 March, RIMS, Kyoto university.
  • Saito, Kyoji: Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(1981), 265-291.
  • Saito, Kyoji: On a Linear Structure of the Quotient Variety by a Finite Reflexion Group, Publ. Res. Inst. Math. Sci. 29 (1993) no. 4, 535-579.
  • Saito, Kyoji: Growth functions associated with Artin monoids of finite type, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no.10, 179-183.
  • Saito, Kyoji: Growth functions for Artin monoids, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no.7, 84-88.
  • Saito, Kyoji and Ishibe, Tadashi: Monoids in the fundamental groups of the complement of logarithmic free divisor in $\C^3$, arXiv: math.GR/0911.3305v1(to appear in Journal of Algebra).
  • Sekiguchi, Jiro: A Classification of Weighted Homogeneous Saito Free Divisors, J. Math.Soc. of Japan vol.61, 2009, pp.1071-1095.
  • Sekiguchi, Jiro: Three Dimensional Saito Free Divisors and Singular Curves, Journal of Siberian Federal University. Mathematics & Physics 1 (2008) 33-41.
  • Tokunaga, Hiroo and Shimada, Ichiro: Algebraic curves and Singularities (Part $\mathrm{I}$: Fundamental Groups and Singularities), Kyoritsu, 2001, published in Japanese.