Hiroshima Mathematical Journal

Infinitesimal isometries on tangent sphere bundles over three-dimensional manifolds

Tatsuo Konno

Full-text: Open access

Abstract

In this article, we study the infinitesimal isometries on tangent sphere bundles over orientable three-dimensional Riemannian manifolds. Focusing on the vector fields which do not preserve fibers, we show the existence of lifts to the bundles of orthonormal frames. These lifts enable us to analyze the infinitesimal isometries by the symmetry of principal fiber bundles. We prove that the tangent sphere bundle admits a non-fiber-preserving infinitesimal isometry if and only if the base manifold has the same constant sectional curvatures as the fibers have. As an application, we classify the infinitesimal isometries on tangent sphere bundles for the three dimensional case.

Article information

Source
Hiroshima Math. J., Volume 41, Number 3 (2011), 343-366.

Dates
First available in Project Euclid: 12 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1323700039

Digital Object Identifier
doi:10.32917/hmj/1323700039

Mathematical Reviews number (MathSciNet)
MR2895285

Zentralblatt MATH identifier
1235.53051

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)
Secondary: 53C10: $G$-structures

Keywords
Tangent sphere bundle frame bundle infinitesimal isometry

Citation

Konno, Tatsuo. Infinitesimal isometries on tangent sphere bundles over three-dimensional manifolds. Hiroshima Math. J. 41 (2011), no. 3, 343--366. doi:10.32917/hmj/1323700039. https://projecteuclid.org/euclid.hmj/1323700039


Export citation

References

  • D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Sci. Publishing, Singapore, 1989, 15–30.
  • T. Konno, Killing vector fields on tangent sphere bundles, Kodai Math. J. 21 (1998), 61–72.
  • T. Konno, Decomposition of Killing vector fields on tangent sphere bundles, Tohoku Math. J. 52 (2000), 349–366.
  • E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (1988), 1–19.
  • P. T. Nagy, Geodesics on the tangent sphere bundle of a Riemannian manifold, Geom. Dedicata 7 (1978), 233–243.
  • B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
  • S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10 (1958), 338–354; II, 14 (1962), 146–155.
  • H. Takagi and M. Yawata, Infinitesimal isometries of frame bundles with natural Riemannian metric, Tohoku Math. J. 43 (1991), 103–115; II, 46 (1994), 341–355.
  • S. Tanno, Killing vectors and geodesic flow vectors on tangent bundles, J. Reine Angew. Math. 282 (1976), 162–171.
  • Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J. 21 (1969), 117–143.