Hiroshima Mathematical Journal

A quantitative result on Sendov's conjecture for a zero near the unit circle

Tomohiro Chijiwa

Full-text: Open access


On Sendov's conjecture, V. Vâjâitu and A. Zaharescu (and M. J. Miller, independently) state the following in their paper: if one zero $a$ of a polynomial which has all the zeros in the closed unit disk is sufficiently close to the unit circle, then the distance from $a$ to the closest critical point is less than $1$. It is desirable to quantify this assertion. In the author's previous paper, we obtained an upper bound on the radius of the disk centered at the origin which contains all the critical points. In this paper, we improve it, and then, estimate the range of the zero $a$ satisfying the above. This result, moreover, implies that if a zero of a polynomial is close to the unit circle and all the critical points are far from the zero, then the polynomial must be close to $P(z)=z^n-c$ with $\abs{c}=1$.

Article information

Hiroshima Math. J., Volume 41, Number 2 (2011), 235-273.

First available in Project Euclid: 24 August 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 12D10: Polynomials: location of zeros (algebraic theorems) {For the analytic theory, see 26C10, 30C15}
Secondary: 26C10, 30C15

Sendov's conjecture polynomial zero critical point


Chijiwa, Tomohiro. A quantitative result on Sendov's conjecture for a zero near the unit circle. Hiroshima Math. J. 41 (2011), no. 2, 235--273. doi:10.32917/hmj/1314204564. https://projecteuclid.org/euclid.hmj/1314204564

Export citation


  • I. Borcea, The Sendov conjecture for polynomials with at most seven distinct zeros, Analysis 16 (1996), no. 2, 137–159.
  • D. A. Brannan, On a conjecture of Ilieff, Proc. Camb. Phil. Soc\null. 64 (1968), 83–85.
  • J. E. Brown, On the Sendov conjecture for sixth degree polynomials, Proc. Amer. Math. Soc\null. 113 (1991), no. 4, 939–946.
  • J. E. Brown and G. Xiang, Proof of the Sendov conjecture for polynomials of degree at most eight, J. Math. Anal. Appl\null. 232 (1999), no. 2, 272–292.
  • T. Chijiwa, A quantitative result on polynomials with zeros in the unit disk, Proc. Japan Acad. Ser. A Math. Sci\null. 86 (2010), no. 10, 165–168.
  • J. Dieudonné, Sur quelques applications de la théorie des fonctions bornées aux polynômes dont toutes les racines sont dans un domain circulaire donné, Actualités Scient. et Industri\null. 114 (1934), 5–24.
  • W. K. Hayman, Research Problems in Function Theory, Athlone Press University of London, London, 1967.
  • S. Kumar and B. G. Shenoy, On the Ilyeff-Sendov conjecture for polynomials with at most five zeros, J. Math. Anal. Appl\null. 171 (1992), 595–600.
  • M. Marden, Geometry of Polynomials, Second edition. Mathematical Surveys, no. 3, Amer. Math. Soc., Providence, RI, 1966.
  • A. Meir and A. Sharma, On Ilieff's conjecture, Pacific J. Math\null. 31 (1969), no. 2, 459–467.
  • M. J. Miller, On Sendov's conjecture for roots near the unit circle, J. Math. Anal. Appl\null. 175 (1993), no. 2, 632–639.
  • M. J. Miller, A quadratic approximation to the Sendov radius near the unit circle, Trans. Amer. Math. Soc\null. 357 (2004), no. 3, 851–873.
  • D. Phelps and R. S. Rodriguez, Some properties of extremal polynomials for the Ilieff Conjecture, Kōdai Math. Sem. Report 24 (1972), 172–175.
  • Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, 26, Oxford Univ. Press, Oxford, 2002.
  • Z. Rubinstein, On a problem of Ilyeff, Pacific J. Math\null. 26 (1968), 159–161.
  • V. Vâjâitu and A. Zaharescu, Ilyeff's conjecture on a corona, Bull. Lond. Math. Soc\null. 25 (1993), no. 3, 49–54.