Hiroshima Mathematical Journal

An application of capacitary functions to an inverse inclusion problem

Mitsuru Nakai

Full-text: Open access

Abstract

An efficient application of capacitary functions for compact subsets of the Royden harmonic boundary to an inverse inclusion problem concerning spaces of Dirichlet finite and mean bounded harmonic functions in the classification theory of Riemann surfaces is given.

Article information

Source
Hiroshima Math. J., Volume 41, Number 2 (2011), 223-233.

Dates
First available in Project Euclid: 24 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1314204563

Digital Object Identifier
doi:10.32917/hmj/1314204563

Mathematical Reviews number (MathSciNet)
MR2849156

Zentralblatt MATH identifier
1254.30062

Subjects
Primary: 30F25: Ideal boundary theory
Secondary: 31A15: Potentials and capacity, harmonic measure, extremal length [See also 30C85] 30F20: Classification theory of Riemann surfaces 30F15: Harmonic functions on Riemann surfaces

Keywords
Capacitary function capacity Dirichlet integral Royden harmonic boundary Wiener harmonic boundary

Citation

Nakai, Mitsuru. An application of capacitary functions to an inverse inclusion problem. Hiroshima Math. J. 41 (2011), no. 2, 223--233. doi:10.32917/hmj/1314204563. https://projecteuclid.org/euclid.hmj/1314204563


Export citation