Hiroshima Mathematical Journal

On a generalized Stokes system with slip boundary conditions in the half-space

Yves Raudin

Full-text: Open access

Abstract

We are interested in a system of Stokes type, where the divergence-free constraint is modified by adding a term proportional to the pressure. The domain is the half-space with nonhomogeneous Navier's boundary conditions. The weighted Sobolev spaces yield a natural functional framework to envisage a wide class of behavior at infinity for data and solutions. So, we can give a range of solutions from strong to very weak depending on the regularity of the data. All along this study, we take the bridge between this system and the linear elasticity system.

Article information

Source
Hiroshima Math. J., Volume 41, Number 2 (2011), 179-209.

Dates
First available in Project Euclid: 24 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1314204561

Digital Object Identifier
doi:10.32917/hmj/1314204561

Mathematical Reviews number (MathSciNet)
MR2849154

Zentralblatt MATH identifier
1228.35182

Subjects
Primary: 12A34 98B76
Secondary: 23C57

Keywords
Stokes problem half-space weighted Sobolev spaces

Citation

Raudin, Yves. On a generalized Stokes system with slip boundary conditions in the half-space. Hiroshima Math. J. 41 (2011), no. 2, 179--209. doi:10.32917/hmj/1314204561. https://projecteuclid.org/euclid.hmj/1314204561


Export citation

References

  • F. Alliot and C. Amrouche, The Stokes problem in $\R^n$: an approach in weighted Sobolev spaces, Math. Meth. Appl. Sci., 9 (1999), 723–754.
  • H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 16–98.
  • C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace's equation in $\R^n$, J. Math. Pures Appl., 73 (1994), 579–606.
  • C. Amrouche, V. Girault and J. Giroire, Equation de Poisson et espaces de Sobolev avec poids critiques, Publications du L. M. A. de l'Université de Pau, 25 (2006).
  • C. Amrouche and S. Nečasová, Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition, Mathematica Bohemica, 126 (2001), 265–274.
  • C. Amrouche, The Neumann problem in the half-space, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 151–156.
  • C. Amrouche and Y. Raudin, Nonhomogeneous biharmonic problem in the half-space, $L^p$ theory and generalized solutions, J. Differential Equations, 236 (2007), 57–81.
  • C. Amrouche, S. Nečasová and Y. Raudin, Very weak, generalized and strong solutions to the Stokes system in the half-space, J. Differential Equations, 244 (2008), 887–915.
  • C. Amrouche, S. Nečasová, and Y. Raudin, From strong to very weak solutions to Stokes system with Navier boundary conditions in the half-space, SIAM J. Math. Anal., 41 (2009), 1792–1815.
  • H. Beirão da Veiga, A new approach to the $L^2$-regularity theorems for linear stationary nonhomogeneous Stokes systems, Portugaliae Mathematica, 54 (1997), 271–286.
  • H. Beirão da Veiga, Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Advances Diff. Eq., 9 (2004), 1079–1114.
  • H. Beirão da Veiga, Regularity of solutions to a non homogeneous boundary value problem for general Stokes systems in $\R^n_+$, Math. Ann., 331 (2005), 203–217.
  • D. Einzel, P. Panzer and M. Liu, Boundary condition for fluid flow: Curved or rough surfaces, Phys. Rev. Lett., 64 (1990), 2269–2272.
  • R. Farwig, A note on the reflection principle for the biharmonic equation and the Stokes system, Acta appl. Math., 25 (1994), 41–51.
  • R. Farwig, G. P. Galdi and H. Sohr, A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data, J. Math. Fluid Mech., 8 (2006), 423–444.
  • R. Farwig, G. P. Galdi and H. Sohr, Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of $\R^2$, J. Differential Equations, 227 (2006), 564–580.
  • G. P. Galdi, C. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann., 331 (2005), 41–74.
  • Y. Giga, Analyticity of the semigroup generated $L_r$ by the Stokes operator in spaces, Math. Z., 178 (1981), 297–329.
  • B. Hanouzet, Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un demi-espace, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227–272.
  • W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, 170 (2001), 96–122.
  • G. M. Kobel'kov, On singular perturbation of the Stokes problem, Numerical analysis and mathematical modeling, Banach Center Publ., Polish Acad. Sci. Warsaw, 29 (1994), 79–83.
  • E. Lauga, M. Brenner and H. Stone, Microfluidics: The no-slip boundary condition, in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, A. Yarin, and J. F. Foss, eds., Springer, 2007, pp. 1219–1240.
  • N. V. Priezjev, A. A. Darhuber and S. M. Troian, Slip behaviour in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations, Phys. Rev. E., 71 (2005), article 041608.
  • N. V. Priezjev and S. M. Troian, Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions, J. Fluid Mech., 554 (2006), 25–46.
  • T. Qian, X.-P. Wang and P. Sheng, Hydrodynamic slip boundary condition at chemically patterned surfaces: A continuum deduction from molecular dynamics, Phys. Rev. E., 72 (2005), article 022501.
  • K. Schumacher, Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces, Ann. Univ. Ferrara, 54 (2008), 123–144.
  • Y. Zhu and S. Granick, Limits of the hydrodynamic no-slip boundary condition, Phys. Rev. Lett., 88 (2002), article 106102.