Hiroshima Mathematical Journal

Regularity criteria for the rational large eddy simulation model

Huiling Duan, Jishan Fan, and Yong Zhou

Full-text: Open access

Abstract

We consider the Rational Large Eddy Simulation (RLES) model introduced by Galdi and Layton (Math. Models Methods Appl. Sci. 10 (2000) 343-350). Various regularity criteria for the strong solution of this model are established here, which improve previous ones.

Article information

Source
Hiroshima Math. J., Volume 41, Number 2 (2011), 167-177.

Dates
First available in Project Euclid: 24 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1314204560

Digital Object Identifier
doi:10.32917/hmj/1314204560

Mathematical Reviews number (MathSciNet)
MR2849153

Zentralblatt MATH identifier
1228.35169

Subjects
Primary: 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10]
Secondary: 76F65: Direct numerical and large eddy simulation of turbulence

Keywords
RLES model Turbulent flows Regularity criterion Besov spaces

Citation

Duan, Huiling; Fan, Jishan; Zhou, Yong. Regularity criteria for the rational large eddy simulation model. Hiroshima Math. J. 41 (2011), no. 2, 167--177. doi:10.32917/hmj/1314204560. https://projecteuclid.org/euclid.hmj/1314204560


Export citation

References

  • H. Beirão da Veiga, A new regularity class for the Naivier-Stokes equations in $\mathbb{R}^n$, Chinese Ann. Math., 16 (1995), 407–412.
  • L. C. Berselli, G. P. Galdi, T. Iliescu and W. J. Layton, Mathematical analysis for the rational large eddy simulation model, Math. Models Methods Appl. Sci., 12 (2002), 1131–1152.
  • L. da Vinci, Codice atlantico, 1894, Piumati, No. 74.
  • E. Fabes, B. Jones and N. Riviere, The initial value problem for the Navier-Stokes equations with data in $L^p$, Arch. Rat. Mech. Anal., 45 (1972), 222–248.
  • G. P. Galdi and W. J. Layton, Approximation of the larger eddies in fluid motions, II: A model for space-filtered flow, Math. Models Methods Appl. Sci., 10 (2000), 343–350.
  • G. P. Galdi and P. Maremonti, Regularity of weak solutions of the Navier-Stokes system in arbitrary domains. (Italian) Ann. Univ. Ferrara Sez. VII (N.S.) 34 (1988), 59–73.
  • Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes equations, J. Differential Equations, 62 (1986), 186–212.
  • H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations, Math. Z., 242 (2002), 251–278.
  • H. Kozono and Y. Shimada, Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations, Math. Nachr., 276 (2004), 63–74.
  • S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2002), 1553–1556.
  • T. Ohyama, Interior regularity of weak solutions to the Navier-Stokes equations, Proc. Japan Acad., 36 (1960), 273–277.
  • O. Reynolds, On the dynamic theory of the incompressible viscous fluids and the determination of the criterion, Philos, Trans. Roy. Soc. London Ser. A, 186 (1895), 123–164.
  • J. Serrin, On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations, Arch. Rat. Mech. Anal., 9 (1962), 187–191.
  • H. Sohr and W. Von Wahl, On the regularity of the pressure of weak solutions of Navier-Stokes equations, Archiv Math., 46 (1986), 428–439.
  • E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
  • M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437–458.
  • H. Triebel, Theory of Functions Spaces II, Birkhäuser, Basel, 1992.
  • Y. Zhou, Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain, Math. Ann., 328 (2004), 173–192.
  • Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496–1514.
  • Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in ${\Bbb R}\sp 3$, Proc. Amer. Math. Soc., 134 (2006), 149–156.
  • Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity, Monatsh. Math., 144 (2005), 251–257.