Hiroshima Mathematical Journal
- Hiroshima Math. J.
- Volume 41, Number 2 (2011), 153-165.
Characterizations of BMO by $A_{p}$ Weights and $p$-Convexity
Abstract
We show that the Lebesgue spaces for defining BMO can be replaced by $p$-convex rearrangement-invariant quasi-Banach function spaces associated with $A_{p}$-weighted measures.
Article information
Source
Hiroshima Math. J., Volume 41, Number 2 (2011), 153-165.
Dates
First available in Project Euclid: 24 August 2011
Permanent link to this document
https://projecteuclid.org/euclid.hmj/1314204559
Digital Object Identifier
doi:10.32917/hmj/1314204559
Mathematical Reviews number (MathSciNet)
MR2849152
Zentralblatt MATH identifier
1227.42024
Subjects
Primary: 42B35: Function spaces arising in harmonic analysis 46B20: Geometry and structure of normed linear spaces 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Keywords
Bounded Mean Oscillation $A_{p}$-weight $p$-convexity rearrangement-invariant quasi-Banach function spaces
Citation
Ho, Kwok-Pun. Characterizations of BMO by $A_{p}$ Weights and $p$-Convexity. Hiroshima Math. J. 41 (2011), no. 2, 153--165. doi:10.32917/hmj/1314204559. https://projecteuclid.org/euclid.hmj/1314204559