Hiroshima Mathematical Journal

Interior capacities of condensers with countably many plates in locally compact spaces

Natalia Zorii

Full-text: Open access

Abstract

The study deals with the theory of interior capacities of condensers in a locally compact space, a condenser being treated here as a countable, locally finite collection of arbitrary sets with the sign $+1$ or $-1$ prescribed such that the closures of oppositely signed sets are mutually disjoint. We are motivated by the known fact that, in the noncompact case, the main minimum-problem of the theory is in general unsolvable, and this occurs even under very natural assumptions (e.g., for the Newtonian, Green, or Riesz kernels in $\mathbb R^n$, $n\geqslant2$, and closed condensers of finitely many plates). Therefore it was particularly interesting to find statements of variational problems dual to the main minimum-problem (and hence providing new equivalent definitions to the capacity), but now always solvable (e.g., even for nonclosed, unbounded condensers of infinitely many plates). For all positive definite kernels satisfying Fuglede's condition of consistency between the strong and vague ($={}$weak$*$) topologies, problems with the desired properties are posed and solved. Their solutions provide a natural generalization of the well-known notion of interior equilibrium measures associated with a set. We give a description of those solutions, establish statements on their uniqueness and continuity, and point out their characteristic properties. Such results are new even for classical kernels in $\mathbb R^n$, which is important in applications.

Article information

Source
Hiroshima Math. J., Volume 40, Number 3 (2010), 273-313.

Dates
First available in Project Euclid: 8 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1291818846

Digital Object Identifier
doi:10.32917/hmj/1291818846

Mathematical Reviews number (MathSciNet)
MR2766662

Zentralblatt MATH identifier
1218.31012

Subjects
Primary: 31C15: Potentials and capacities

Keywords
Minimal energy problems interior capacities of condensers interior equilibrium measures associated with a condenser consistent and perfect kernels completeness theorem for signed Radon measures

Citation

Zorii, Natalia. Interior capacities of condensers with countably many plates in locally compact spaces. Hiroshima Math. J. 40 (2010), no. 3, 273--313. doi:10.32917/hmj/1291818846. https://projecteuclid.org/euclid.hmj/1291818846


Export citation

References

  • N. Bourbaki, "Topologie générale. Chap. I, II", Actualités Sci. Ind., 1142, Paris (1951).
  • N. Bourbaki, "Intégration. Chap. I--IV", Actualités Sci. Ind., 1175, Paris (1952).
  • N. Bourbaki, Intégration des measures, Actualités Sci. Ind., 1244, Paris (1956).
  • H. Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74--106.
  • J. Deny, Les potentiels d'énergie finite, Acta Math. 82 (1950), 107--183.
  • J. Deny, Sur la définition de l'énergie en théorie du potential, Ann. Inst. Fourier Grenoble 2 (1950), 83--99.
  • R. Edwards, Cartan's balayage theory for hyperbolic Riemann surfaces, Ann. Inst. Fourier 8 (1958), 263--272.
  • R. Edwards, "Functional analysis. Theory and applications", Holt. Rinehart and Winston, New York (1965).
  • O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Comm. Sém. Math. Univ. Lund 3 (1935), 1--118.
  • B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139--215.
  • B. Fuglede, Caractérisation des noyaux consistants en théorie du potentiel, Comptes Rendus 255 (1962), 241--243.
  • A. A. Gonchar and E. A. Rakhmanov, On the equilibrium problem for vector potentials, Uspekhi Mat. Nauk 40:4 (1985), 155--156; English transl. in: Russian Math. Surveys 40:4 (1985), 183--184.
  • W. K. Hayman and P. B. Kennedy, "Subharmonic functions", Academic Press, London (1976).
  • J. L. Kelley, "General topology", Princeton, New York (1957).
  • N. S. Landkof, "Foundations of modern potential theory", Nauka, Fizmatlit, Moscow (1966); English transl., Springer-Verlag, Berlin (1972).
  • E. H. Moore and H. L. Smith, A general theory of limits, Amer. J. Math. 44 (1922), 102--121.
  • E. M. Nikishin and V. N. Sorokin, "Rational approximations and orthogonality", Nauka, Fizmatlit, Moscow (1988); English transl., Translations of Mathematical Monographs 44, Amer. Math. Soc., Providence, RI 1991.
  • G. Of, W. L. Wendland, and N. Zorii, On the numerical solution of minimal energy problems, Complex Variables and Elliptic Equations (to appear).
  • M. Ohtsuka, On potentials in locally compact spaces, J. Sci. Hiroshima Univ. Ser. A-1 25 (1961), 135--352.
  • Ch. de la Valée-Poussin, "Le potentiel logarithmique, balayage et répresentation conforme", Louvain--Paris (1949).
  • N. Zorii, A noncompact variational problem in the Riesz potential theory. I; II, Ukrain. Math. Zh. 47 (1995), 1350--1360; 48 (1996), 603--613 (in Russian); English transl. in: Ukrain. Math. J. 47 (1995); 48 (1996).
  • N. Zorii, Extremal problems in the theory of potentials in locally compact spaces. I; II; III, Bull. Soc. Sci. Lettr. \Lódź 50 Sér. Rech. Déform. 31 (2000), 23--54; 55--80; 81--106.
  • N. Zorii, On the solvability of the Gauss variational problem, Comput. Meth. Funct. Theory 2 (2002), 427--448.
  • N. Zorii, Equilibrium problems for potentials with external fields, Ukrain. Math. Zh. 55 (2003), 1315--1339 (in Russian); English transl. in: Ukrain. Math. J. 55 (2003).
  • N. Zorii, Necessary and sufficient conditions for the solvability of the Gauss variational problem, Ukrain. Math. Zh. 57 (2005), 60--83 (in Russian); English transl. in: Ukrain. Math. J. 57 (2005).
  • N. Zorii, Interior capacities of condensers with infinitely many plates in a locally compact space, arXiv:0906.4522.