Journal of Science of the Hiroshima University, Series A-I (Mathematics)

Analysis of partially balanced incomplete block designs

Sumiyasu Yamamoto and Yoshio Fujii

Full-text: Open access

Article information

Source
J. Sci. Hiroshima Univ. Ser. A-I Math., Volume 27, Number 2 (1963), 119-135.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206139555

Digital Object Identifier
doi:10.32917/hmj/1206139555

Mathematical Reviews number (MathSciNet)
MR0164416

Zentralblatt MATH identifier
0124.35004

Subjects
Primary: 62.60

Citation

Yamamoto, Sumiyasu; Fujii, Yoshio. Analysis of partially balanced incomplete block designs. J. Sci. Hiroshima Univ. Ser. A-I Math. 27 (1963), no. 2, 119--135. doi:10.32917/hmj/1206139555. https://projecteuclid.org/euclid.hmj/1206139555


Export citation

References

  • [1] Bose, R. C. and Connor, W. S. (1952). Combinatorial properties of group divisible incomplete block designs. Ann. Math. Statist. 23 367-383.
  • [2] Bose, R. C. and Mesner, D. M. (1959). On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30 21-38.
  • [3] Connor, W. S. and Clatworthy, W. H. (1954). Some theorems for partially balanced designs. Ann. Math. Statist. 25 100-112.
  • [4] Frechet, M. (1937-8). Recherches theoriques modernes sur la theorie des probabilites. Traite du Calciddes Probabilites (ed. Borel), 1 no. 3, Paris.
  • [5] James, A. T. (1957). The relationship algebra of an experimental design. Ann. Math. Statist. 28 993-1002.
  • [6] Mann, H. B. (1960). The algebra of a linear hypothesis. Ann. Math. Statist. 311-15.
  • [7] Ogawa, J. (1959). The theory of the association algebra and the relationship algebra of a partially balanced incomplete block design. Inst. Statist, mimeo. series 224, Chapel Hill, N. C.