Journal of Science of the Hiroshima University, Series A-I (Mathematics)

Two-step processes by one-step methods of order 3 and of order 4

Hisayoshi Shintani

Full-text: Open access

Article information

Source
J. Sci. Hiroshima Univ. Ser. A-I Math., Volume 30, Number 2 (1966), 183-195.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206139108

Digital Object Identifier
doi:10.32917/hmj/1206139108

Mathematical Reviews number (MathSciNet)
MR0207216

Zentralblatt MATH identifier
0221.65121

Subjects
Primary: 65.61

Citation

Shintani, Hisayoshi. Two-step processes by one-step methods of order 3 and of order 4. J. Sci. Hiroshima Univ. Ser. A-I Math. 30 (1966), no. 2, 183--195. doi:10.32917/hmj/1206139108. https://projecteuclid.org/euclid.hmj/1206139108


Export citation

References

  • [1] Blum, E.K.: A modification of the Runge-Kutta fourth-order method, Math. Comp., 16 (1962), 176-187.
  • [2] Butcher, J. C.: Coecients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc, 3 (1963), 185-201.
  • [3] Butcher, On the integration process of A. Hula, ibid., 202-206.
  • [4] Butcher, On Runge-Kutta processes of high order, J. Austral. Math. Soc, 4 (1964), 179-194.
  • [5] Butcher, Implicit Runge-Kutta processes, Math. Comp., 18 (1964), 50-64.
  • [6] Butcher, On the attainable order of Runge-Kutta methods, Math. Comp., 19 (1965), 408-417.
  • [7] Byrne, G. D. and R. L. Lambert: Pseudo-Runge-Kutta methods involving two points, J. Assoc. Comput. Mach., 13(1966), 114-123.
  • [8] Ceschino, F.: Evaluation de erreur par pas dans les problemes differentiels, Chiffres, 5 (1962), 223- 229.
  • [9] Ceschino, F. et J. Kuntzmann: Problemes differentiels de conditions initiales, Paris, 1963.
  • [10] Fyfe, D. J.: Economical evaluation of Runge-Kutta formulae, Math. Comp., 20 (1966), 392-398.
  • [11] Guerra, S.: Qualche contributo alia teoria delle formule di Runge-Kutta, Calcolo, 2 (1965), 273-294.
  • [12] Hull, T. E. and R. L. Johnston: Optimum Runge-Kutta methods, Math. Comp., 18 (1964), 306-310.
  • [13] King, R.: Runge-Kutta methods with constrained minimum error bounds, Math. Comp., 20 (1966), 386- 391.
  • [14] Luther, H. A. and H. P. Konen: Some fifth-order classical Runge-Kutta formulas, SIAM Rev., 7 (1965), 551-558.
  • [15] Ralston, A.: Runge-Kutta methods with mimimum error bounds, Math. Comp., 16 (1962), 431-437.
  • [16] Ralston, A. and H. S. Wilf: Mathematical methods for digital computers, New York, 1960.
  • [17] Scraton, R. E.: Estimation of the truncation error in Runge-Kutta and allied processes, Comput. J., 7 (1964), 246-248.
  • [18] Shanks, E. B.: Solutions of differential equations by evaluations of functions, Math. Comp., 20 (1966), 21-38.
  • [19] Shintani, H.: On a one-step method of order 4, J. Sci. Hiroshma Univ., Ser. A-l, 30 (1966), 91-107.
  • [20] Witty, W. H.: A new method of numerical integration of differential equations, Math. Comp., 18 (1964), 497-500.