Journal of Science of the Hiroshima University, Series A-I (Mathematics)

On semigroups, semirings, and rings of quotients

David A. Smith

Full-text: Open access

Article information

Source
J. Sci. Hiroshima Univ. Ser. A-I Math., Volume 30, Number 2 (1966), 123-130.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206139104

Digital Object Identifier
doi:10.32917/hmj/1206139104

Mathematical Reviews number (MathSciNet)
MR0207879

Zentralblatt MATH identifier
0147.28002

Subjects
Primary: 20.92

Citation

Smith, David A. On semigroups, semirings, and rings of quotients. J. Sci. Hiroshima Univ. Ser. A-I Math. 30 (1966), no. 2, 123--130. doi:10.32917/hmj/1206139104. https://projecteuclid.org/euclid.hmj/1206139104


Export citation

References

  • [1] K. Asano, Arithmetische Idealtheorie in nichtkommutativen Ringen, Japanese J. of Math., 16 (1939-40), 1-36.
  • [2] K. Asano, Uber die Quotientenbildung von Schiefringen, J. Math. Soc. Japan, 1 (1949), 73-78.
  • [3] G. D. Findlay and J. Lambek, A generalized ring of quotients I, II, Canadian Math. Bull., 1 (1958), 77-85, 155-167.
  • [4] A. Giovannini and D. A. Smith, On the projective geometry of the 3-j symbols, to appear.
  • [5] A. W. Goldie, Rings with maximum condition, multilithed lecture notes, Yale University, 1961.
  • [6] N. Jacobson, The Theory of Rings, New York: American Mathematical Society, 1943.
  • [7] R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math., 11 (1961), 1385-1392.
  • [8] A. Malcev, On the immersion of an algebraic ring into afield, Math. Ann., 113 (1936), 686-691.
  • [9] B. H. Neumann, Embedding nonassociative rings in division rings, Proc. London Math. Soc. (3), 1 (1951), 241-256.
  • [10] O. Ore, Linear equations in non-commutative fields,Annals of Math., 32 (1931), 463-477.
  • [11] L. W. Small, Orders in Artinian rings, J. Algebra, 4 (1966), 13-41.
  • [12] H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc, 40 (1934), 914-920.
  • [13] H. S. Vandiver, On some simple types of semi-rings, Amer. Math. Monthly, 46 (1939), 22-26.
  • [14] H. S. Vandiver, On the imbedding of one semi-group in another, with application to semi-rings, Amer. J. Math., 62 (1940), 72-78.
  • [15] Seth Warner, Modern Algebra, vol. I, Englewood Cliffs: Prentice-Hall, 1965.