Journal of Science of the Hiroshima University, Series A-I (Mathematics)

Commutative rings for which each proper homomorphic image is a multiplication ring

Craig A. Wood

Full-text: Open access

Article information

Source
J. Sci. Hiroshima Univ. Ser. A-I Math., Volume 33, Number 1 (1969), 85-94.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206138589

Digital Object Identifier
doi:10.32917/hmj/1206138589

Mathematical Reviews number (MathSciNet)
MR0245567

Zentralblatt MATH identifier
0176.31701

Subjects
Primary: 13.50

Citation

Wood, Craig A. Commutative rings for which each proper homomorphic image is a multiplication ring. J. Sci. Hiroshima Univ. Ser. A-I Math. 33 (1969), no. 1, 85--94. doi:10.32917/hmj/1206138589. https://projecteuclid.org/euclid.hmj/1206138589


Export citation

References

  • [1] H. S. Butts and R. C. Phillips, Almost multiplication rings, Can. J. Math., 17 (1965), 267-277.
  • [2] R. W. Gilmer, Eleven nonequivalent conditions on a commutative ring^ Nagoya Math. J., 28 (1966), 183-194.
  • [3] R. W. Gilmer, Extension of results concerning rings in which semi-primary ideals are primary, Duke Math. J., 31 (1964), 73-78.
  • [4] R. W. Gilmer, Rings in which semi-primary ideals are primary, Pacific J. Math., 12 (1962), 1273- 1276.
  • [5] R. W. Gilmer and J. L. Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Am. Math. Soc, 114 (1965), 40-52.
  • [6] W Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Math. Annalen, 101 (1929), 729-744.
  • [7] S. Mori, Uber allgemeine Multiplikationsringe I, J. Sci. Hiroshima Univ., Ser. A, 4 (1934), 1-26.
  • [8] J. L. Mott, Equivalent conditions for a ring to be a multiplication ring, Can. J. Math., 16 (1964), 429-434.
  • [9] O. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand, Princeton, 1958.

See also

  • Part II: Craig A. Wood, Dennis E. Bertholf. Commutative rings for which each proper homomorphic image is a multiplication ring. II. Hiroshima Math. J., Volume 1, Number 1, (1971), 1--4.