Hiroshima Mathematical Journal

Commutative rings for which each proper homomorphic image is a multiplication ring. II

Craig A. Wood and Dennis E. Bertholf

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 1, Number 1 (1971), 1-4.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206138137

Digital Object Identifier
doi:10.32917/hmj/1206138137

Mathematical Reviews number (MathSciNet)
MR0304362

Zentralblatt MATH identifier
0221.13014

Subjects
Primary: 13A15: Ideals; multiplicative ideal theory

Citation

Wood, Craig A.; Bertholf, Dennis E. Commutative rings for which each proper homomorphic image is a multiplication ring. II. Hiroshima Math. J. 1 (1971), no. 1, 1--4. doi:10.32917/hmj/1206138137. https://projecteuclid.org/euclid.hmj/1206138137


Export citation

References

  • [1] Robert W. Gilmer, Eleven nonequivalent conditions on a commutativering, Nagoya Math. J, 26 (1966), 183-194.
  • [2] Robert W. Gilmer, Extention of results concerning rings in which semiprimary ideals are primary, Duke Math. J., 31 (1964), 73-78.
  • [3] Robert W. Gilmer and Joe L. Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Am. Math. Soc, 114 (1965), 40-52.
  • [4] Craig A. Wood, Commutative rings for which eachproper homomorphic image is a multiplication ring, J. Sci. Hiroshima Univ., Ser. A-I, 33 (1969), 85-94.
  • [5] Oscar Zariski and Pierre Samuel, CommutativeAlgebra, Vol. I, Van Nostrand, Princeton, 1958.

See also

  • Part I: Craig A. Wood. Commutative rings for which each proper homomorphic image is a multiplication ring. J. Sci. Hiroshima Univ. Ser. A-I Math., Volume 33, Number 1, (1969), 85--94.