Hiroshima Mathematical Journal

On one-step methods utilizing the second derivative

Hisayoshi Shintani

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 1, Number 2 (1971), 349-372.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137979

Digital Object Identifier
doi:10.32917/hmj/1206137979

Mathematical Reviews number (MathSciNet)
MR0319372

Zentralblatt MATH identifier
0284.65055

Subjects
Primary: 65L05: Initial value problems

Citation

Shintani, Hisayoshi. On one-step methods utilizing the second derivative. Hiroshima Math. J. 1 (1971), no. 2, 349--372. doi:10.32917/hmj/1206137979. https://projecteuclid.org/euclid.hmj/1206137979


Export citation

References

  • [1] Butcher,J. C : Implicit Runge Kutta processes, Math. Comp., 18 (1964), 50-64.
  • [2] Butcher,J. C : On the attainable order of Runge-Kutta methods,Math. Comp., 19 (1965), 408-417.
  • [3] Cassity, G. R.: Solutions of the fifth-order Runge-Kutta equations, SIAM J. Numer. Anal., 3 (1966), 598-606.
  • [4] Cassity, C. R.: The complete solution of the fifth order Runge-Kutta equations, SIAM J. Numer. Anal., 6 (1969),432-436.
  • [5] Ceschino, F. and J. Kuntzmann: Numerical solution of initial value problems, Prentice-Hall, 1966.
  • [6] Cooper, G. J.: Interpolation and quadrature methods for ordinary differential equations, Math. Comp., 22 (1968), 69-76.
  • [7] Costabile, F.: Metodi pseudo Runge-Kutta di seconda specie,Calcolo, 7 (1970),305-322.
  • [8] Filippi, S. und W. Glasmacher: Uber neue Ergebnisse zu den Runge-Kutta-Verfahren mit Hilfe von nicht numerischen programmen,Elektronische Datenverarbeitung (1968), 16-23.
  • [9] Filippi, S. und D. Sommer: Beitrge zu den impliziten Runge-Kutta-Verfahren, Elektronische Datenverarbeitung (1968),113-121.
  • [10] Gates, L. D.: Numerical solution of differential equationsby repeated quadratures,SIAM Rev., 6 (196 4), 134-147.
  • [11] Gruttke, W. B.: Pseudo-Runge-Kutta methodsof the fifth order, J. Assoc. Comput. Mach., 17 (1970), 613-628.
  • [12] Guerra, S.: Formule di Runge-Kutta di ordine eleato per sistemi differenziali lineari del 1° ordine con applicazione at calcolo delle radici delle equazionialgebriche, Calcolo, 3 (1966),407-440.
  • [13] Konen, H. P. and H. A. Luther: Some singular explicit fifth order Runge-Kutta solutions, SIAM J. Numer. Anal., 4 (1967),607-619.
  • [14] Lawson, J. D.: An order five Runge-Kutta process with extended region of stability, SIAM J. Numer. Anal., 3 (1966), 593-597.
  • [15] Lawson, J. D: An order six Runge-Kutta process with extended region of stability, SIAM J. Numer. Anal., 4 (1967),620-625.
  • [16] Luther, H. A.: Further explicit fifth-order Runge-Kutta formulas, SIAM Rev., 8 (1966), 374-380.
  • [17] Luther, H. A.: An explicit sixth-order Runge-Kutta formula, Math. Comp., 22 (1968),434-436.
  • [18] Luther, H. A. and H. G. Sierra: On the optimal choice of fourth-order Runge-Kutta formulas, Numer. Math., 15 (1970),354-358.
  • [19] Rosser, J. B.: A Runge-Kutta for all seasons,SIAM Rev., 9 (1967),417-452.
  • [20] Shampine, L. F. and H. A. Watts: Block implicit one-step methods,Math. Comp., 23 (1969),731- 740.
  • [21] Squier, D. P.: One-step methods for ordinary differential equations, Numer. Math., 13 (1969), 176- 179.
  • [22] Urabe, M.: An implicit one-step method of high-order accuracy for the numerical integration of ordinary differential equations, Numer. Math., 15 (1970), 151-164.
  • [23] Verner, J. H.: The order of some implicit Runge-Kutta methods, Numer. Math., 13 (1969), 14-23.