Hiroshima Mathematical Journal

$K\sb{Łambda }$-rings of lens spaces $L\spn(4)$

Teiichi Kobayashi and Masahiro Sugawara

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 1, Number 2 (1971), 253-271.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137974

Digital Object Identifier
doi:10.32917/hmj/1206137974

Mathematical Reviews number (MathSciNet)
MR0312504

Zentralblatt MATH identifier
0261.55003

Subjects
Primary: 55E20

Citation

Kobayashi, Teiichi; Sugawara, Masahiro. $K\sb{Łambda }$-rings of lens spaces $L\spn(4)$. Hiroshima Math. J. 1 (1971), no. 2, 253--271. doi:10.32917/hmj/1206137974. https://projecteuclid.org/euclid.hmj/1206137974


Export citation

References

  • [1] J. F. Adams, Vector fields on spheres,Ann. of Math., 75 (1962), 603-632.
  • [2] M. F. Atiyah, Immersions and embeddings of manifolds, Topology, 1 (1962), 125-132.
  • [3] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symposia in Pure Math. Vol. Ill, Amer. Math. Soc. (1961), 7-38.
  • [4] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc, 93 (1959), 242-276.
  • [5] T. Kamb, The structure of K-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
  • [6] T. Kawaguchi and M. Sugawara, K- and KO-rings of lens spaces L n (p2) for odd prime p, Hiroshima Math. J.,1 (1971), 273-286.
  • [7] T. Kobayashi, Non-immersiontheorems for lens spaces,J. Math. Kyoto Univ., 6 (1966), 91-108; II, J. Sci. Hiroshima Univ., Ser. A-I, 32 (1968), 285-292.
  • [8] N. Mahammed, A proposde la K-theorie des espaceslenticulaires C.R. Acad. Sc. Paris, 271 (1970), 639-642.
  • [9] D. Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc, 138 (1969), 97-106.
  • [10] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math., 86 (1964), 685-697.