Hiroshima Mathematical Journal

Harmonic functions and the Borel-Weil theorem

Atsutaka Kowata and Kiyosato Okamoto

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 1 (1974), 89-97.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137155

Digital Object Identifier
doi:10.32917/hmj/1206137155

Mathematical Reviews number (MathSciNet)
MR0457796

Zentralblatt MATH identifier
0356.31001

Subjects
Primary: 32M10: Homogeneous complex manifolds [See also 14M17, 57T15]
Secondary: 43A85: Analysis on homogeneous spaces 31B05: Harmonic, subharmonic, superharmonic functions

Citation

Kowata, Atsutaka; Okamoto, Kiyosato. Harmonic functions and the Borel-Weil theorem. Hiroshima Math. J. 4 (1974), no. 1, 89--97. doi:10.32917/hmj/1206137155. https://projecteuclid.org/euclid.hmj/1206137155


Export citation

References

  • [1] R. Courantand D. Hubert, Methods of Mathematical Physhics vol. 2, Interscience,New York (1962).
  • [2] L. Ehrenpreis, Fourier analysis in several complex variables, Interscience, New York (1970).
  • [3] M. Hashizume, A. Kowata, K. Minemura and K. Okamoto, An integral representation of an eigenfunction of the laplacian on the euclidean space, Hiroshima Math.J. 2 (1972), 535-545.
  • [4] M. Hashizume, K. Minemura and K. Okamoto, Harmonic functions on a symmetric space of rank one, Hiroshima Math.J. 3 (1973), 81-108.
  • [5] S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154.
  • [6] B. Kostant, Lie algebra cohomology and the generalized BorelWeil theorem, Ann. of Math. 74 (1961), 329-387.
  • [7] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
  • [8] N. YA. Vilenkin, Special functions and the theory of group representations, Translations of Math. Mono. vol. 22, Amer. Math. Soc, Providence, Rhode Island (1968).