Hiroshima Mathematical Journal

On the $K$-ring of the orbit manifold $(S\sp{2m+1}\times S\spl)/D\sbn$ by the dihedral group $D\sbn$

Mitsunori Imaoka and Masahiro Sugawara

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 1 (1974), 53-70.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137151

Digital Object Identifier
doi:10.32917/hmj/1206137151

Mathematical Reviews number (MathSciNet)
MR0353347

Zentralblatt MATH identifier
0285.55010

Subjects
Primary: 57E25
Secondary: 57F15

Citation

Imaoka, Mitsunori; Sugawara, Masahiro. On the $K$-ring of the orbit manifold $(S\sp{2m+1}\times S\spl)/D\sbn$ by the dihedral group $D\sbn$. Hiroshima Math. J. 4 (1974), no. 1, 53--70. doi:10.32917/hmj/1206137151. https://projecteuclid.org/euclid.hmj/1206137151


Export citation

References

  • [1] J. F. Adams: Vectorfieldson spheres, Ann. of Math. 75 (1962), 602-632.
  • [2] M. F. Atiyah: Vector bundles and the Knneth formula, Topology 1 (1962), 245-248.
  • [3] M. F. Atiyah: Vector bundles and the Knneth formula, Charactersand cohomology of finite groups, Publ. Math. Inst. HES 9 (1964), 23- 64.
  • [4] M. F. Atiyah: Vector bundles and the Knneth formula, F. Hirzebruch: Vector bundles and homogeneous spaces Differential Geometry, Proc. Symp. Pure Math. Amer. Math. Soc. 3 (1961), 7-38.
  • [5] C. W. Curtis and I. Reiner: Representation Theory of Finite Groups andAssociative Algebras, Pure and Applied Math. 11, Interscience Publishers, 1962.
  • [6] M. Fujii: K -groups of Dold manifolds, Osaka J. Math. 3 (1966), 49-64.
  • [7] M. Fujii: K -groups of Dold manifolds, Ring structure of Ku-cohomologies of Dold manifolds,ibid. 6 (1969), 107-115.
  • [8] T. Fujino, N. Ishikawa and *M.Kamata: On the complex K-group of certain manifold, Math. Rep. Coll. Gen. Ed. Kyushu Univ. 9 (1973), 1-6.
  • [9] M. Kamata and H. Minami: Bordism groups of dihedral groups J. Math. Soc. Japan 25 (1973), 334-341.
  • [10] T. Kambe: The structure of K-rings of the lens space and their applications, ibid. 18 (1966), 135-146.
  • [11] T. Kawaguchi and M. Sugawara: K- and KO-rings of the lens space Ln (p2) for odd prime p, Hiroshima Math.J. 1 (1971), 273-286.